↓ Skip to main content

Opposing effects of β-2 and β-1 adrenergic receptor signaling on neuroinflammation and dopaminergic neuron survival in α-synuclein-mediated neurotoxicity

Overview of attention for article published in Journal of Neuroinflammation, March 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

news
1 news outlet
twitter
6 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Opposing effects of β-2 and β-1 adrenergic receptor signaling on neuroinflammation and dopaminergic neuron survival in α-synuclein-mediated neurotoxicity
Published in
Journal of Neuroinflammation, March 2023
DOI 10.1186/s12974-023-02748-3
Pubmed ID
Authors

Daniel Torrente, Enming J. Su, Gerald P. Schielke, Mark Warnock, Kris Mann, Daniel A. Lawrence

Abstract

Noradrenergic neurons in the locus coeruleus (LC) are the primary source of norepinephrine (NE) in the brain and degeneration of these neurons is reported in the early stages of Parkinson's disease (PD), even prior to dopaminergic neuron degeneration in the substantia nigra (SN), which is a hallmark of PD pathology. NE depletion is generally associated with increased PD pathology in neurotoxin-based PD models. The effect of NE depletion in other models of PD-like α-synuclein-based models is largely unexplored. In PD models and in human patients, β-adrenergic receptors' (AR) signaling is associated with a reduction of neuroinflammation and PD pathology. However, the effect of NE depletion in the brain and the extent of NE and β-ARs signaling involvement in neuroinflammation, and dopaminergic neuron survival is poorly understood. Two mouse models of PD, a 6OHDA neurotoxin-based model and a human α-synuclein (hα-SYN) virus-based model of PD, were used. DSP-4 was used to deplete NE levels in the brain and its effect was confirmed by HPLC with electrochemical detection. A pharmacological approach was used to mechanistically understand the impact of DSP-4 in the hα-SYN model of PD using a norepinephrine transporter (NET) and a β-AR blocker. Epifluorescence and confocal imaging were used to study changes in microglia activation and T-cell infiltration after β1-AR and β2-AR agonist treatment in the hα-SYN virus-based model of PD. Consistent with previous studies, we found that DSP-4 pretreatment increased dopaminergic neuron loss after 6OHDA injection. In contrast, DSP-4 pretreatment protected dopaminergic neurons after hα-SYN overexpression. DSP-4-mediated protection of dopaminergic neurons after hα-SYN overexpression was dependent on β-AR signaling since using a β-AR blocker prevented DSP-4-mediated dopaminergic neuron protection in this model of PD. Finally, we found that the β-2AR agonist, clenbuterol, reduced microglia activation, T-cell infiltration, and dopaminergic neuron degeneration, whereas xamoterol a β-1AR agonist showed increased neuroinflammation, blood brain barrier permeability (BBB), and dopaminergic neuron degeneration in the context of hα-SYN-mediated neurotoxicity. Our data demonstrate that the effects of DSP-4 on dopaminergic neuron degeneration are model specific, and suggest that in the context of α-SYN-driven neuropathology, β2-AR specific agonists may have therapeutic benefit in PD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 33%
Unspecified 1 17%
Student > Postgraduate 1 17%
Unknown 2 33%
Readers by discipline Count As %
Unspecified 1 17%
Agricultural and Biological Sciences 1 17%
Immunology and Microbiology 1 17%
Unknown 3 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2023.
All research outputs
#2,829,457
of 23,972,543 outputs
Outputs from Journal of Neuroinflammation
#426
of 2,764 outputs
Outputs of similar age
#53,431
of 422,449 outputs
Outputs of similar age from Journal of Neuroinflammation
#10
of 67 outputs
Altmetric has tracked 23,972,543 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,764 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,449 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.