↓ Skip to main content

Analysis of structural variation among inbred mouse strains

Overview of attention for article published in BMC Genomics, March 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Analysis of structural variation among inbred mouse strains
Published in
BMC Genomics, March 2023
DOI 10.1186/s12864-023-09197-5
Pubmed ID
Authors

Ahmed Arslan, Zhuoqing Fang, Meiyue Wang, Yalun Tan, Zhuanfen Cheng, Xinyu Chen, Yuan Guan, Laura J. Pisani, Boyoung Yoo, Gill Bejerano, Gary Peltz

Abstract

'Long read' sequencing methods have been used to identify previously uncharacterized structural variants that cause human genetic diseases. Therefore, we investigated whether long read sequencing could facilitate genetic analysis of murine models for human diseases. The genomes of six inbred strains (BTBR T + Itpr3tf/J, 129Sv1/J, C57BL/6/J, Balb/c/J, A/J, SJL/J) were analyzed using long read sequencing. Our results revealed that (i) Structural variants are very abundant within the genome of inbred strains (4.8 per gene) and (ii) that we cannot accurately infer whether structural variants are present using conventional short read genomic sequence data, even when nearby SNP alleles are known. The advantage of having a more complete map was demonstrated by analyzing the genomic sequence of BTBR mice. Based upon this analysis, knockin mice were generated and used to characterize a BTBR-unique 8-bp deletion within Draxin that contributes to the BTBR neuroanatomic abnormalities, which resemble human autism spectrum disorder. A more complete map of the pattern of genetic variation among inbred strains, which is produced by long read genomic sequencing of the genomes of additional inbred strains, could facilitate genetic discovery when murine models of human diseases are analyzed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 33%
Student > Master 1 17%
Unknown 3 50%
Readers by discipline Count As %
Neuroscience 2 33%
Arts and Humanities 1 17%
Unknown 3 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2023.
All research outputs
#15,318,691
of 24,288,381 outputs
Outputs from BMC Genomics
#5,964
of 10,941 outputs
Outputs of similar age
#202,853
of 407,156 outputs
Outputs of similar age from BMC Genomics
#42
of 138 outputs
Altmetric has tracked 24,288,381 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,941 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 407,156 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.