↓ Skip to main content

Multiomics analysis revealed the mechanisms related to the enhancement of proliferation, metastasis and EGFR-TKI resistance in EGFR-mutant LUAD with ARID1A deficiency

Overview of attention for article published in Cell Communication and Signaling, March 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (58th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
3 X users
video
1 YouTube creator

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multiomics analysis revealed the mechanisms related to the enhancement of proliferation, metastasis and EGFR-TKI resistance in EGFR-mutant LUAD with ARID1A deficiency
Published in
Cell Communication and Signaling, March 2023
DOI 10.1186/s12964-023-01065-9
Pubmed ID
Authors

Dantong Sun, Feiyue Feng, Fei Teng, Tongji Xie, Jinsong Wang, Puyuan Xing, Haili Qian, Junling Li

Abstract

Dysregulated ARID1A expression is frequently detected in lung adenocarcinoma (LUAD) and mediates significant changes in cancer behaviors and a poor prognosis. ARID1A deficiency in LUAD enhances proliferation and metastasis, which could be induced by activation of the Akt signaling pathway. However, no further exploration of the mechanisms has been performed. Lentivirus was used for the establishment of the ARID1A knockdown (ARID1A-KD) cell line. MTS and migration/invasion assays were used to examine changes in cell behaviors. RNA-seq and proteomics methods were applied. ARID1A expression in tissue samples was determined by IHC. R software was used to construct a nomogram. ARID1A KD significantly promoted the cell cycle and accelerated cell division. In addition, ARID1A KD increased the phosphorylation level of a series of oncogenic proteins, such as EGFR, ErbB2 and RAF1, activated the corresponding pathways and resulted in disease progression. In addition, the bypass activation of the ErbB pathway, the activation of the VEGF pathway and the expression level changes in epithelial-mesenchymal transformation biomarkers induced by ARID1A KD contributed to the insensitivity to EGFR-TKIs. The relationship between ARID1A and the sensitivity to EGFR-TKIs was also determined using tissue samples from LUAD patients. Loss of ARID1A expression influences the cell cycle, accelerates cell division, and promotes metastasis. EGFR-mutant LUAD patients with low ARID1A expression had poor overall survival. In addition, low ARID1A expression was associated with a poor prognosis in EGFR-mutant LUAD patients who received first-generation EGFR-TKI treatment. Video abstract.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 25%
Unknown 3 75%
Readers by discipline Count As %
Unspecified 1 25%
Biochemistry, Genetics and Molecular Biology 1 25%
Unknown 2 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2023.
All research outputs
#13,867,951
of 23,505,064 outputs
Outputs from Cell Communication and Signaling
#301
of 1,057 outputs
Outputs of similar age
#142,809
of 357,831 outputs
Outputs of similar age from Cell Communication and Signaling
#11
of 57 outputs
Altmetric has tracked 23,505,064 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,057 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 357,831 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.