↓ Skip to main content

Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells

Overview of attention for article published in BMC Molecular and Cell Biology, March 2023
Altmetric Badge

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells
Published in
BMC Molecular and Cell Biology, March 2023
DOI 10.1186/s12860-023-00467-4
Pubmed ID
Authors

Qi-Qin Dan, Li Chen, Lan-Lan shi, Xiu Zhou, Ting-Hua Wang, Hua Liu

Abstract

This study was designed to investigate to test the effect of exosomes from urine-derived mesenchymal stem cells (USCs) on the survival and viability of aging retinal ganglion cells (RGCs), and explored the preliminary related mechanisms. Primary USCs were cultured and identified by immunofluorescence staining. Aging RGCs models were established by D-galactose treatment and identified by β-Galactosidase staining. After treatment with USCs conditioned medium (with USCs removal), flow cytometry was performed to examine the apoptosis and cell cycle of RGCs. Cell viability of RGCs was detected by Cell-counting Kit 8 (CCK8) assay. Moreover, gene sequencing and bioinformatics analysis were applied to analyze the genetic variation after medium treatment in RGCs along with the biological functions of differentially expressed genes (DEGs). The number of apoptotic aging RGCs was significantly reduced in USCs medium-treated RGCs. Besides, USCs-derived exosomes exert significant promotion on the cell viability and proliferation of aging RGCs. Further, sequencing data analyzed and identified DEGs expressed in aging RGCs and aging RGCs treated with USCs conditioned medium. The sequencing outcomes demonstrated 117 upregulated genes and 186 downregulated genes in normal RGCs group vs aging RGCs group, 137 upregulated ones and 517 downregulated ones in aging RGCs group vs aging RGCs + USCs medium group. These DEGs involves in numerous positive molecular activities to promote the recovery of RGCs function. Collectively, the therapeutic potentials of USCs-derived exosomes include suppression on cell apoptosis, enhancement on cell viability and proliferation of aging RGCs. The underlying mechanism involves multiple genetic variation and changes of transduction signaling pathways.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 43%
Student > Bachelor 1 14%
Unknown 3 43%
Readers by discipline Count As %
Neuroscience 2 29%
Agricultural and Biological Sciences 1 14%
Biochemistry, Genetics and Molecular Biology 1 14%
Unknown 3 43%