↓ Skip to main content

Distribution of Anopheles gambiae thioester-containing protein 1 alleles along malaria transmission gradients in The Gambia

Overview of attention for article published in Malaria Journal, March 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Distribution of Anopheles gambiae thioester-containing protein 1 alleles along malaria transmission gradients in The Gambia
Published in
Malaria Journal, March 2023
DOI 10.1186/s12936-023-04518-1
Pubmed ID
Authors

Majidah Hamid-Adiamoh, Abdoulie Mai Janko Jabang, Kevin Ochieng Opondo, Mamadou Ousmane Ndiath, Benoit Sessinou Assogba, Alfred Amambua-Ngwa

Abstract

Thioester-containing protein 1 (TEP1) is a highly polymorphic gene playing an important role in mosquito immunity to parasite development and associated with Anopheles gambiae vectorial competence. Allelic variations in TEP1 could render mosquito either susceptible or resistant to parasite infection. Despite reports of TEP1 genetic variations in An. gambiae, the correlation between TEP1 allelic variants and transmission patterns in malaria endemic settings remains unclear. TEP1 allelic variants were characterized by PCR from archived genomic DNA of > 1000 An. gambiae mosquitoes collected at 3 time points between 2009 and 2019 from eastern Gambia, where malaria transmission remains moderately high, and western regions with low transmission. Eight common TEP1 allelic variants were identified at varying frequencies in An. gambiae from both transmission settings. These comprised the wild type TEP1, homozygous susceptible genotype, TEP1s; homozygous resistance genotypes: TEP1rA and TEP1rB, and the heterozygous resistance genotypes: TEP1srA, TEP1srB, TEP1rArB and TEP1srArB. There was no significant disproportionate distribution of the TEP1 alleles by transmission setting and the temporal distribution of alleles was also consistent across the transmission settings. TEP1s was the most common in all vector species in both settings (allele frequencies: East = 21.4-68.4%. West = 23.5-67.2%). In Anopheles arabiensis, the frequency of wild type TEP1 and susceptible TEP1s was significantly higher in low transmission setting than in high transmission setting (TEP1: Z = - 4.831, P < 0.0001; TEP1s: Z = - 2.073, P = 0.038). The distribution of TEP1 allele variants does not distinctly correlate with malaria endemicity pattern in The Gambia. Further studies are needed to understand the link between genetic variations in vector population and transmission pattern in the study settings. Future studies on the implication for targeting TEP1 gene for vector control strategy such as gene drive systems in this settings is also recommended.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 22%
Researcher 2 22%
Student > Master 1 11%
Unknown 4 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 33%
Engineering 2 22%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2023.
All research outputs
#6,442,409
of 23,539,593 outputs
Outputs from Malaria Journal
#1,757
of 5,651 outputs
Outputs of similar age
#95,700
of 363,009 outputs
Outputs of similar age from Malaria Journal
#28
of 99 outputs
Altmetric has tracked 23,539,593 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 5,651 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,009 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.