↓ Skip to main content

RNA demethylase ALKBH5 promotes tumorigenesis of t (8;21) acute myeloid leukemia via ITPA m6A modification

Overview of attention for article published in Biomarker Research, March 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RNA demethylase ALKBH5 promotes tumorigenesis of t (8;21) acute myeloid leukemia via ITPA m6A modification
Published in
Biomarker Research, March 2023
DOI 10.1186/s40364-023-00464-x
Pubmed ID
Authors

Ran Li, Xiaolu Wu, Kai Xue, Dandan Feng, Jianyong Li, Junmin Li

Abstract

Although t (8;21) is in fact considered a good risk acute myeloid leukemia (AML), only 60% of the patients live beyond 5 years after diagnosis. Studies have shown that RNA demethylase ALKBH5 promotes leukemogenesis. However, the molecular mechanism and clinical significance of ALKBH5 in t (8;21) AML have not been elucidated. The expression of ALKBH5 was assessed in t (8;21) AML patients via qRT-PCR and western blot. The proliferative activity of these cells was examined through CCK-8 or colony-forming assays, while flow cytometry approaches were used to examine apoptotic cell rates. The in vivo role of ALKBH5 promoting leukemogenesis was assessed using t (8;21) murine model, CDX, and PDX models. RNA sequencing, m6A RNA methylation assay, RNA immunoprecipitation, and luciferase reporter assay were used to explore the molecular mechanism of ALKBH5 in t (8;21) AML. ALKBH5 is highly expressed in t (8;21) AML patients. Silencing ALKBH5 suppresses the proliferation and promotes the apoptosis of patient-derived AML cells and Kasumi-1 cells. With integrated transcriptome analysis and wet-lab confirmation, we found that ITPA is a functionally important target of ALKBH5. Mechanistically, ALKBH5 demethylates ITPA mRNA and increases its mRNA stability, leading to enhanced ITPA expression. Furthermore, transcription factor TCF15, specifically expressed in leukemia stem/initiating cells (LSCs/LICs), is responsible for the dysregulated expression of ALKBH5 in t (8;21) AML. Our work uncovers a critical function for the TCF15/ALKBH5/ITPA axis and provides insights into the vital roles of m6A methylation in t (8;21) AML.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 1 33%
Unknown 2 67%
Readers by discipline Count As %
Medicine and Dentistry 1 33%
Unknown 2 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2023.
All research outputs
#15,826,194
of 23,510,717 outputs
Outputs from Biomarker Research
#175
of 341 outputs
Outputs of similar age
#182,010
of 339,608 outputs
Outputs of similar age from Biomarker Research
#7
of 22 outputs
Altmetric has tracked 23,510,717 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 341 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,608 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.