↓ Skip to main content

Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration

Overview of attention for article published in Cell Communication and Signaling, March 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
4 X users
video
1 YouTube creator

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration
Published in
Cell Communication and Signaling, March 2023
DOI 10.1186/s12964-023-01040-4
Pubmed ID
Authors

Weiming Zhao, Lan Wang, Juntang Yang, Xinyu Chen, Xiaoshu Guo, Kai Xu, Ningdan Wang, Wenyu Zhao, Cong Xia, Hui Lian, Ivan Rosas, Guoying Yu

Abstract

Matrix metalloproteinases (MMPs) play important roles in remodeling the extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). MMP19, which is an MMP, was significantly upregulated in hyperplastic alveolar epithelial cells in IPF lung tissues and promoted epithelial-mesenchymal transition (EMT). Recent studies have demonstrated that endothelial-to-mesenchymal transition (E(nd)MT) contributes to pulmonary fibrosis. However, the role of MMP19 in pulmonary vascular injury and repair and E(nd)MT remains unclear. To determine the role of MMP19 in E(nd)MT and pulmonary fibrosis. MMP19 expressions were determined in the lung endothelial cells of IPF patients and bleomycin (BLM)-induced mice. The roles of MMP19 in E(nd)MT and endothelial barrier permeability were studied in the MMP19 cDNA-transfected primary human pulmonary microvascular endothelial cells (HPMECs) and MMP19 adenoassociated virus (MMP19-AAV)-infected mice. The regulatory mechanism of MMP19 in pulmonary fibrosis was elucidated by blocking its interacting proteins SDF1 and ET1 with AMD3100 and Bosentan, respectively. In this study, we found that MMP19 expression was significantly increased in the lung endothelial cells of IPF patients and BLM-induced mice compared to the control groups. MMP19 promoted E(nd)MT and the migration and permeability of HPMECs in vitro, stimulated monocyte infiltration into the alveolus, and aggravated BLM-induced pulmonary fibrosis in vivo. SDF1 and Endothelin-1 (ET1) were physically associated with MMP19 in HPMECs and colocalized with MMP19 in endothelial cells in IPF patient lung tissues. AMD3100 and bosentan alleviated the fibrosis induced by MMP19 in the BLM mouse model. MMP19 promoted E(nd)MT by interacting with ET1 and stimulated monocyte infiltration into lung tissues via the SDF1/CXCR4 axis, thus aggravating BLM-induced pulmonary fibrosis. Vascular integrity regulated by MMP19 could be a promising therapeutic target for suppressing pulmonary fibrosis. Video abstract.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Librarian 1 17%
Student > Ph. D. Student 1 17%
Unknown 4 67%
Readers by discipline Count As %
Arts and Humanities 1 17%
Sports and Recreations 1 17%
Unknown 4 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2023.
All research outputs
#7,386,762
of 23,862,416 outputs
Outputs from Cell Communication and Signaling
#204
of 1,126 outputs
Outputs of similar age
#130,692
of 406,431 outputs
Outputs of similar age from Cell Communication and Signaling
#10
of 63 outputs
Altmetric has tracked 23,862,416 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 1,126 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 406,431 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.