↓ Skip to main content

Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data

Overview of attention for article published in BMC Medical Research Methodology, March 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data
Published in
BMC Medical Research Methodology, March 2023
DOI 10.1186/s12874-023-01870-3
Pubmed ID
Authors

Chawarat Rotejanaprasert, Andrew B. Lawson, Richard J. Maude

Abstract

To control emerging diseases, governments often have to make decisions based on limited evidence. The effective or temporal reproductive number is used to estimate the expected number of new cases caused by an infectious person in a partially susceptible population. While the temporal dynamic is captured in the temporal reproduction number, the dominant approach is currently based on modeling that implicitly treats people within a population as geographically well mixed. In this study we aimed to develop a generic and robust methodology for estimating spatiotemporal dynamic measures that can be instantaneously computed for each location and time within a Bayesian model selection and averaging framework. A simulation study was conducted to demonstrate robustness of the method. A case study was provided of a real-world application to COVID-19 national surveillance data in Thailand. Overall, the proposed method allowed for estimation of different scenarios of reproduction numbers in the simulation study. The model selection chose the true serial interval when included in our study whereas model averaging yielded the weighted outcome which could be less accurate than model selection. In the case study of COVID-19 in Thailand, the best model based on model selection and averaging criteria had a similar trend to real data and was consistent with previously published findings in the country. The method yielded robust estimation in several simulated scenarios of force of transmission with computing flexibility and practical benefits. Thus, this development can be suitable and practically useful for surveillance applications especially for newly emerging diseases. As new outbreak waves continue to develop and the risk changes on both local and global scales, our work can facilitate policymaking for timely disease control.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 40%
Lecturer 1 20%
Researcher 1 20%
Student > Ph. D. Student 1 20%
Readers by discipline Count As %
Environmental Science 2 40%
Business, Management and Accounting 1 20%
Earth and Planetary Sciences 1 20%
Medicine and Dentistry 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2023.
All research outputs
#3,699,035
of 23,539,593 outputs
Outputs from BMC Medical Research Methodology
#555
of 2,077 outputs
Outputs of similar age
#52,895
of 346,344 outputs
Outputs of similar age from BMC Medical Research Methodology
#4
of 39 outputs
Altmetric has tracked 23,539,593 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,077 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 346,344 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.