↓ Skip to main content

Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes

Overview of attention for article published in Clinical Epigenetics, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes
Published in
Clinical Epigenetics, November 2016
DOI 10.1186/s13148-016-0293-3
Pubmed ID
Authors

Chandrakumar Sathishkumar, Paramasivam Prabu, Mahalingam Balakumar, Raji Lenin, Durai Prabhu, Ranjith Mohan Anjana, Viswanathan Mohan, Muthuswamy Balasubramanyam

Abstract

A role of proinflammation has been implicated in the pathogenesis of diabetes, but the up-stream regulatory signals and molecular signatures are poorly understood. While histone modifications such as changes in histone deacetylase (HDAC) are emerging as novel epigenetic biomarkers, there is lack of studies to demonstrate their clinical relevance in diabetes. Therefore, we investigated the extent of HDAC machinery and inflammatory signals in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes mellitus (T2DM) compared to control subjects. HDAC3 activity was significantly (p < 0.05) increased in patients with T2DM compared to control subjects. While subtypes of HDACs were differentially expressed at their transcriptional levels in patients with type 2 diabetes, the most prominent observation is the significantly (p < 0.05) elevated messenger RNA (mRNA) levels of HDAC3. Expression levels of Sirt1 which represents the class III HDAC were decreased significantly in T2DM (p < 0.05). Plasma levels of both TNF-α and IL-6 were significantly higher (p < 0.05) in patients with type 2 diabetes compared to control subjects. Among the proinflammatory mediators, the mRNA expression of MCP-1, IL1-β, NFκB, TLR2, and TLR4 were also significantly (p < 0.05) increased in T2DM. Transcriptional levels of DBC1 (deleted in breast cancer 1, which is a negative regulator of HDAC3) were seen significantly reduced in PBMCs from T2DM. Interestingly, HDAC3 activity/HDAC3 mRNA levels positively correlated to proinflammation, poor glycemic control, and insulin resistance. Striking message from this study is that while looking for anti-inflammatory strategies and drugs with novel mode of action for T2DM, discovering and designing specific inhibitors targeted to HDAC3 appears promising.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 14%
Student > Ph. D. Student 12 13%
Student > Bachelor 9 10%
Researcher 8 9%
Lecturer > Senior Lecturer 4 4%
Other 9 10%
Unknown 36 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 22%
Medicine and Dentistry 10 11%
Agricultural and Biological Sciences 9 10%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Nursing and Health Professions 2 2%
Other 7 8%
Unknown 39 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2018.
All research outputs
#3,585,816
of 22,903,988 outputs
Outputs from Clinical Epigenetics
#226
of 1,260 outputs
Outputs of similar age
#69,852
of 415,136 outputs
Outputs of similar age from Clinical Epigenetics
#3
of 22 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,260 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,136 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.