↓ Skip to main content

Fecal microbiota from MRL/lpr mice exacerbates pristane-induced lupus

Overview of attention for article published in Arthritis Research & Therapy, March 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fecal microbiota from MRL/lpr mice exacerbates pristane-induced lupus
Published in
Arthritis Research & Therapy, March 2023
DOI 10.1186/s13075-023-03022-w
Pubmed ID
Authors

Xiaoqing Yi, Cancan Huang, Chuyi Huang, Ming Zhao, Qianjin Lu

Abstract

The roles of gut microbiota in the pathogenesis of SLE have been receiving much attention during recent years. However, it remains unknown how fecal microbiota transplantation (FMT) and microbial metabolites affect immune responses and lupus progression. We transferred fecal microbiota from MRL/lpr (Lpr) mice and MRL/Mpj (Mpj) mice or PBS to pristane-induced lupus mice and observed disease development. We also screened gut microbiota and metabolite spectrums of pristane-induced lupus mice with FMT via 16S rRNA sequencing, metagenomic sequencing, and metabolomics, followed by correlation analysis. FMT from MRL/lpr mice promoted the pathogenesis of pristane-induced lupus and affected immune cell profiles in the intestine, particularly the plasma cells. The structure and composition of microbial communities in the gut of the FMT-Lpr mice were different from those of the FMT-Mpj mice and FMT-PBS mice. The abundances of specific microbes such as prevotella taxa were predominantly elevated in the gut microbiome of the FMT-Lpr mice, which were positively associated with functional pathways such as cyanoamino acid metabolism. Differential metabolites such as valine and L-isoleucine were identified with varied abundances among the three groups. The abundance alterations of the prevotella taxa may affect the phenotypic changes such as proteinuria levels in the pristane-induced lupus mice. These findings further confirm that gut microbiota play an important role in the pathogenesis of lupus. Thus, altering the gut microbiome may provide a novel way to treat lupus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Other 1 13%
Lecturer > Senior Lecturer 1 13%
Unknown 6 75%
Readers by discipline Count As %
Earth and Planetary Sciences 1 13%
Medicine and Dentistry 1 13%
Unknown 6 75%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 March 2023.
All research outputs
#14,929,728
of 25,394,764 outputs
Outputs from Arthritis Research & Therapy
#2,165
of 3,382 outputs
Outputs of similar age
#184,297
of 427,072 outputs
Outputs of similar age from Arthritis Research & Therapy
#20
of 36 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,382 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,072 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.