↓ Skip to main content

CenFind: a deep-learning pipeline for efficient centriole detection in microscopy datasets

Overview of attention for article published in BMC Bioinformatics, March 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CenFind: a deep-learning pipeline for efficient centriole detection in microscopy datasets
Published in
BMC Bioinformatics, March 2023
DOI 10.1186/s12859-023-05214-2
Pubmed ID
Authors

Léo Bürgy, Martin Weigert, Georgios Hatzopoulos, Matthias Minder, Adrien Journé, Sahand Jamal Rahi, Pierre Gönczy

Abstract

High-throughput and selective detection of organelles in immunofluorescence images is an important but demanding task in cell biology. The centriole organelle is critical for fundamental cellular processes, and its accurate detection is key for analysing centriole function in health and disease. Centriole detection in human tissue culture cells has been achieved typically by manual determination of organelle number per cell. However, manual cell scoring of centrioles has a low throughput and is not reproducible. Published semi-automated methods tally the centrosome surrounding centrioles and not centrioles themselves. Furthermore, such methods rely on hard-coded parameters or require a multichannel input for cross-correlation. Therefore, there is a need for developing an efficient and versatile pipeline for the automatic detection of centrioles in single channel immunofluorescence datasets. We developed a deep-learning pipeline termed CenFind that automatically scores cells for centriole numbers in immunofluorescence images of human cells. CenFind relies on the multi-scale convolution neural network SpotNet, which allows the accurate detection of sparse and minute foci in high resolution images. We built a dataset using different experimental settings and used it to train the model and evaluate existing detection methods. The resulting average F1-score achieved by CenFind is > 90% across the test set, demonstrating the robustness of the pipeline. Moreover, using the StarDist-based nucleus detector, we link the centrioles and procentrioles detected with CenFind to the cell containing them, overall enabling automatic scoring of centriole numbers per cell. Efficient, accurate, channel-intrinsic and reproducible detection of centrioles is an important unmet need in the field. Existing methods are either not discriminative enough or focus on a fixed multi-channel input. To fill this methodological gap, we developed CenFind, a command line interface pipeline that automates cell scoring of centrioles, thereby enabling channel-intrinsic, accurate and reproducible detection across experimental modalities. Moreover, the modular nature of CenFind enables its integration in other pipelines. Overall, we anticipate CenFind to prove critical for accelerating discoveries in the field.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Student > Ph. D. Student 1 11%
Unspecified 1 11%
Student > Bachelor 1 11%
Other 1 11%
Other 0 0%
Unknown 3 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 33%
Unspecified 1 11%
Biochemistry, Genetics and Molecular Biology 1 11%
Chemistry 1 11%
Unknown 3 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 March 2023.
All research outputs
#14,256,892
of 23,964,824 outputs
Outputs from BMC Bioinformatics
#4,308
of 7,489 outputs
Outputs of similar age
#176,117
of 401,652 outputs
Outputs of similar age from BMC Bioinformatics
#60
of 152 outputs
Altmetric has tracked 23,964,824 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,489 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 401,652 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 152 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.