↓ Skip to main content

Gut commensal Enterocloster species host inoviruses that are secreted in vitro and in vivo

Overview of attention for article published in Microbiome, March 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
34 X users
video
1 YouTube creator

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gut commensal Enterocloster species host inoviruses that are secreted in vitro and in vivo
Published in
Microbiome, March 2023
DOI 10.1186/s40168-023-01496-z
Pubmed ID
Authors

Juan C. Burckhardt, Derrick H. Y. Chong, Nicola Pett, Carolina Tropini

Abstract

Bacteriophages in the family Inoviridae, or inoviruses, are under-characterized phages previously implicated in bacterial pathogenesis by contributing to biofilm formation, immune evasion, and toxin secretion. Unlike most bacteriophages, inoviruses do not lyse their host cells to release new progeny virions; rather, they encode a secretion system that actively pumps them out of the bacterial cell. To date, no inovirus associated with the human gut microbiome has been isolated or characterized. In this study, we utilized in silico, in vitro, and in vivo methods to detect inoviruses in bacterial members of the gut microbiota. By screening a representative genome library of gut commensals, we detected inovirus prophages in Enterocloster spp. (formerly Clostridium spp.). We confirmed the secretion of inovirus particles in in vitro cultures of these organisms using imaging and qPCR. To assess how the gut abiotic environment, bacterial physiology, and inovirus secretion may be linked, we deployed a tripartite in vitro assay that progressively evaluated bacterial growth dynamics, biofilm formation, and inovirus secretion in the presence of changing osmotic environments. Counter to other inovirus-producing bacteria, inovirus production was not correlated with biofilm formation in Enterocloster spp. Instead, the Enterocloster strains had heterogeneous responses to changing osmolality levels relevant to gut physiology. Notably, increasing osmolality induced inovirus secretion in a strain-dependent manner. We confirmed inovirus secretion in a gnotobiotic mouse model inoculated with individual Enterocloster strains in vivo in unperturbed conditions. Furthermore, consistent with our in vitro observations, inovirus secretion was regulated by a changed osmotic environment in the gut due to osmotic laxatives. In this study, we report on the detection and characterization of novel inoviruses from gut commensals in the Enterocloster genus. Together, our results demonstrate that human gut-associated bacteria can secrete inoviruses and begin to elucidate the environmental niche filled by inoviruses in commensal bacteria. Video Abstract.

X Demographics

X Demographics

The data shown below were collected from the profiles of 34 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Student > Master 3 13%
Researcher 3 13%
Student > Bachelor 2 9%
Unknown 10 43%
Readers by discipline Count As %
Immunology and Microbiology 4 17%
Biochemistry, Genetics and Molecular Biology 2 9%
Environmental Science 1 4%
Physics and Astronomy 1 4%
Social Sciences 1 4%
Other 1 4%
Unknown 13 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 July 2023.
All research outputs
#1,861,038
of 25,483,400 outputs
Outputs from Microbiome
#704
of 1,767 outputs
Outputs of similar age
#37,513
of 422,561 outputs
Outputs of similar age from Microbiome
#21
of 79 outputs
Altmetric has tracked 25,483,400 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,767 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,561 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.