↓ Skip to main content

STR-realigner: a realignment method for short tandem repeat regions

Overview of attention for article published in BMC Genomics, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
STR-realigner: a realignment method for short tandem repeat regions
Published in
BMC Genomics, December 2016
DOI 10.1186/s12864-016-3294-x
Pubmed ID
Authors

Kaname Kojima, Yosuke Kawai, Kazuharu Misawa, Takahiro Mimori, Masao Nagasaki

Abstract

In the estimation of repeat numbers in a short tandem repeat (STR) region from high-throughput sequencing data, two types of strategies are mainly taken: a strategy based on counting repeat patterns included in sequence reads spanning the region and a strategy based on estimating the difference between the actual insert size and the insert size inferred from paired-end reads. The quality of sequence alignment is crucial, especially in the former approaches although usual alignment methods have difficulty in STR regions due to insertions and deletions caused by the variations of repeat numbers. We proposed a new dynamic programming based realignment method named STR-realigner that considers repeat patterns in STR regions as prior knowledge. By allowing the size change of repeat patterns with low penalty in STR regions, accurate realignment is expected. For the performance evaluation, publicly available STR variant calling tools were applied to three types of aligned reads: synthetically generated sequencing reads aligned with BWA-MEM, those realigned with STR-realigner, those realigned with ReviSTER, and those realigned with GATK IndelRealigner. From the comparison of root mean squared errors between estimated and true STR region size, the results for the dataset realigned with STR-realigner are better than those for other cases. For real data analysis, we used a real sequencing dataset from Illumina HiSeq 2000 for a parent-offspring trio. RepeatSeq and lobSTR were applied to the sequence reads for these individuals aligned with BWA-MEM, those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner. STR-realigner shows the best performance in terms of consistency of the size of estimated STR regions in Mendelian inheritance. Root mean squared error values were also calculated from the comparison of these estimated results with STR region sizes obtained from high coverage PacBio sequencing data, and the results from the realigned sequencing data with STR-realigner showed the least (the best) root mean squared error value. The effectiveness of the proposed realignment method for STR regions was verified from the comparison with an existing method on both simulation datasets and real whole genome sequencing dataset.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 19%
Researcher 10 18%
Student > Master 10 18%
Student > Bachelor 4 7%
Other 2 4%
Other 6 11%
Unknown 14 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 30%
Agricultural and Biological Sciences 10 18%
Computer Science 5 9%
Social Sciences 2 4%
Engineering 2 4%
Other 5 9%
Unknown 16 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2016.
All research outputs
#20,359,475
of 22,908,162 outputs
Outputs from BMC Genomics
#9,302
of 10,676 outputs
Outputs of similar age
#350,111
of 416,044 outputs
Outputs of similar age from BMC Genomics
#199
of 256 outputs
Altmetric has tracked 22,908,162 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,676 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,044 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 256 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.