↓ Skip to main content

Antibiotic treatment using amoxicillin-clavulanic acid impairs gut mycobiota development through modification of the bacterial ecosystem

Overview of attention for article published in Microbiome, April 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

blogs
2 blogs
twitter
28 X users
video
1 YouTube creator

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Antibiotic treatment using amoxicillin-clavulanic acid impairs gut mycobiota development through modification of the bacterial ecosystem
Published in
Microbiome, April 2023
DOI 10.1186/s40168-023-01516-y
Pubmed ID
Authors

Madeleine Spatz, Gregory Da Costa, Rebecka Ventin-Holmberg, Julien Planchais, Chloé Michaudel, Yazhou Wang, Camille Danne, Alexia Lapiere, Marie-Laure Michel, Kaija-Leena Kolho, Philippe Langella, Harry Sokol, Mathias L. Richard

Abstract

Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota. We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota. Bacterial and fungal communities were subjected to qPCR or 16S and ITS2 amplicon-based sequencing for microbiota analysis. In vitro assays further characterized bacterial-fungal interactions, with mixed cultures between specific bacteria and fungi. Amoxicillin-clavulanic acid treatment triggered a decrease in the total fungal population in mouse feces, while other antibiotics had opposite effects on the fungal load. This decrease is accompanied by a total remodelling of the fungal population with the enrichment in Aspergillus, Cladosporium, and Valsa genera. In the presence of amoxicillin-clavulanic acid, microbiota analysis showed a remodeling of bacterial microbiota with an increase in specific bacteria belonging to the Enterobacteriaceae. Using in vitro assays, we isolated different Enterobacteriaceae species and explored their effect on different fungal strains. We showed that Enterobacter hormaechei was able to reduce the fungal population in vitro and in vivo through yet unknown mechanisms. Bacteria and fungi have strong interactions within the microbiota; hence, the perturbation initiated by an antibiotic treatment targeting the bacterial community can have complex consequences and can induce opposite alterations of the mycobiota. Interestingly, amoxicillin-clavulanic acid treatment has a deleterious effect on the fungal community, which may have been partially due to the overgrowth of specific bacterial strains with inhibiting or competing effects on fungi. This study provides new insights into the interactions between fungi and bacteria of the intestinal microbiota and might offer new strategies to modulate gut microbiota equilibrium. Video Abstract.

X Demographics

X Demographics

The data shown below were collected from the profiles of 28 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 24%
Researcher 2 10%
Student > Master 2 10%
Student > Doctoral Student 1 5%
Unspecified 1 5%
Other 1 5%
Unknown 9 43%
Readers by discipline Count As %
Medicine and Dentistry 5 24%
Biochemistry, Genetics and Molecular Biology 2 10%
Agricultural and Biological Sciences 2 10%
Unspecified 1 5%
Immunology and Microbiology 1 5%
Other 1 5%
Unknown 9 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 December 2023.
All research outputs
#1,412,757
of 25,837,817 outputs
Outputs from Microbiome
#473
of 1,790 outputs
Outputs of similar age
#29,090
of 422,730 outputs
Outputs of similar age from Microbiome
#10
of 85 outputs
Altmetric has tracked 25,837,817 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,790 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 37.9. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,730 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.