↓ Skip to main content

Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging

Overview of attention for article published in BMC Neuroscience, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging
Published in
BMC Neuroscience, December 2016
DOI 10.1186/s12868-016-0316-1
Pubmed ID
Authors

Friedrich Wetterling, Eva Chatzikonstantinou, Laurent Tritschler, Stephen Meairs, Marc Fatar, Lothar R. Schad, Saema Ansar

Abstract

Diffusion magnetic resonance imaging (MRI) is the current-state-of-the-art technique to clinically investigate acute (0-24 h) ischemic stroke tissue. However, reduced apparent diffusion coefficient (ADC)-considered a marker of tissue damage-was observed to reverse spontaneously during the subacute stroke phase (24-72 h) which means that low ADC cannot be used to reflect the damaged tissue after 24 h in experimental and clinical studies. One reason for the change in ADC is that ADC values drop with cytotoxic edema (acute phase) and rise when vasogenic edema begins (subacute phase). Recently, combined (1)H- and (23)Na-MRI was proposed as a more accurate approach to improve delineation between reversible (penumbra) and irreversible ischemic injury (core). The aim of this study was to investigate the effects of reperfusion on the ADC and the sodium MRI signal after experimental ischemic stroke in rats in well-defined areas of different viability levels of the cerebral lesion, i.e. core and penumbra as defined via perfusion and histology. Transient middle cerebral artery occlusion was induced in male rats by using the intraluminal filament technique. MRI sodium, perfusion and diffusion measurement was recorded before reperfusion, shortly after reperfusion and 24 h after reperfusion. The animals were reperfused after 90 min of ischemia. Sodium signal in core did not change before reperfusion, increased after reperfusion while sodium signal in penumbra was significantly reduced before reperfusion, but showed no changes after reperfusion compared to control. The ADC was significantly decreased in core tissue at all three time points compared to contralateral side. This decrease recovered above commonly applied viability thresholds in the core after 24 h. Reduced sodium-MRI signal in conjunction with reduced ADC can serve as a viability marker for penumbra detection and complement hydrogen diffusion- and perfusion-MRI in order to facilitate time-independent assessment of tissue fate and cellular bioenergetics failure in stroke patients.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Student > Master 4 13%
Librarian 2 7%
Professor 2 7%
Researcher 2 7%
Other 3 10%
Unknown 12 40%
Readers by discipline Count As %
Medicine and Dentistry 4 13%
Agricultural and Biological Sciences 4 13%
Neuroscience 3 10%
Computer Science 2 7%
Nursing and Health Professions 1 3%
Other 4 13%
Unknown 12 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2016.
All research outputs
#20,359,475
of 22,908,162 outputs
Outputs from BMC Neuroscience
#1,057
of 1,248 outputs
Outputs of similar age
#353,668
of 419,655 outputs
Outputs of similar age from BMC Neuroscience
#20
of 32 outputs
Altmetric has tracked 22,908,162 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,248 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,655 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.