↓ Skip to main content

The climate changes promoted the chloroplast genomic evolution of Dendrobium orchids among multiple photosynthetic pathways

Overview of attention for article published in BMC Plant Biology, April 2023
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The climate changes promoted the chloroplast genomic evolution of Dendrobium orchids among multiple photosynthetic pathways
Published in
BMC Plant Biology, April 2023
DOI 10.1186/s12870-023-04186-y
Pubmed ID
Authors

Qiqian Xue, Jiapeng Yang, Wenhui Yu, Hongman Wang, Zhenyu Hou, Chao Li, Qingyun Xue, Wei Liu, Xiaoyu Ding, Zhitao Niu

Abstract

Dendrobium orchids have multiple photosynthetic pathways, which can be used as a model system for studying the evolution of crassulacean acid metabolism (CAM). In this study, based on the results of the net photosynthetic rates (Pn), we classified Dendrobium species into three photosynthetic pathways, then employed and compared their chloroplast genomes. The Dendrobium chloroplast genomes have typical quartile structures, ranging from 150,841-153,038 bp. The apparent differences in GC content, sequence variability, and IR junctions of SSC/IRB junctions (JSBs) were measured within chloroplast genomes among different photosynthetic pathways. The phylogenetic analysis has revealed multiple independent CAM origins among the selected Dendrobium species. After counting insertions and deletions (InDels), we found that the occurrence rates and distribution densities among different photosynthetic pathways were inconsistent. Moreover, the evolution patterns of chloroplast genes in Dendrobium among three photosynthetic pathways were also diversified. Considering the diversified genome structure variations and the evolution patterns of protein-coding genes among Dendrobium species, we proposed that the evolution of the chloroplast genomes was disproportional among different photosynthetic pathways. Furthermore, climatic correlation revealed that temperature and precipitation have influenced the distribution among different photosynthetic pathways and promoted the foundation of CAM pathway in Dendrobium orchids. Based on our study, we provided not only new insights into the CAM evolution of Dendrobium but also provided beneficial genetic data resources for the further systematical study of Dendrobium.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 17%
Student > Bachelor 1 17%
Unknown 4 67%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 33%
Unknown 4 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2023.
All research outputs
#20,931,913
of 23,565,002 outputs
Outputs from BMC Plant Biology
#2,567
of 3,315 outputs
Outputs of similar age
#192,974
of 246,064 outputs
Outputs of similar age from BMC Plant Biology
#29
of 40 outputs
Altmetric has tracked 23,565,002 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,315 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,064 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.