↓ Skip to main content

Sex differences in the transcriptome of extracellular vesicles secreted by fetal neural stem cells and effects of chronic alcohol exposure

Overview of attention for article published in Biology of Sex Differences, April 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sex differences in the transcriptome of extracellular vesicles secreted by fetal neural stem cells and effects of chronic alcohol exposure
Published in
Biology of Sex Differences, April 2023
DOI 10.1186/s13293-023-00503-0
Pubmed ID
Authors

Dae D. Chung, Amanda H. Mahnke, Marisa R. Pinson, Nihal A. Salem, Michael S. Lai, Natalie P. Collins, Andrew E. Hillhouse, Rajesh C. Miranda

Abstract

Prenatal alcohol (ethanol) exposure (PAE) results in brain growth restriction, in part, by reprogramming self-renewal and maturation of fetal neural stem cells (NSCs) during neurogenesis. We recently showed that ethanol resulted in enrichment of both proteins and pro-maturation microRNAs in sub-200-nm-sized extracellular vesicles (EVs) secreted by fetal NSCs. Moreover, EVs secreted by ethanol-exposed NSCs exhibited diminished efficacy in controlling NSC metabolism and maturation. Here we tested the hypothesis that ethanol may also influence the packaging of RNAs into EVs from cell-of-origin NSCs. Sex-specified fetal murine iso-cortical neuroepithelia from three separate pregnancies were maintained ex vivo, as neurosphere cultures to model the early neurogenic niche. EVs were isolated by ultracentrifugation from NSCs exposed to a dose range of ethanol. RNA from paired EV and cell-of-origin NSC samples was processed for ribosomal RNA-depleted RNA sequencing. Differential expression analysis and exploratory weighted gene co-expression network analysis (WGCNA) identified candidate genes and gene networks that were drivers of alterations to the transcriptome of EVs relative to cells. The RNA content of EVs differed significantly from cell-of-origin NSCs. Biological sex contributed to unique transcriptome variance in EV samples, where > 75% of the most variant transcripts were also sex-variant in EVs but not in cell-of-origin NSCs. WGCNA analysis also identified sex-dependent enrichment of pathways, including dopamine receptor binding and ectoderm formation in female EVs and cell-substrate adhesion in male EVs, with the top significant DEGs from differential analysis of overall individual gene expressions, i.e., Arhgap15, enriched in female EVs, and Cenpa, enriched in male EVs, also serving as WCGNA hub genes of sex-biased EV WGCNA clusters. In addition to the baseline RNA content differences, ethanol exposure resulted in a significant dose-dependent change in transcript expression in both EVs and cell-of-origin NSCs that predominantly altered sex-invariant RNAs. Moreover, at the highest dose, ~ 73% of significantly altered RNAs were enriched in EVs, but depleted in NSCs. The EV transcriptome is distinctly different from, and more sex-variant than, the transcriptome of cell-of-origin NSCs. Ethanol, a common teratogen, results in dose-dependent sorting of RNA transcripts from NSCs to EVs which may reprogram the EV-mediated endocrine environment during neurogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 29%
Professor 1 7%
Student > Ph. D. Student 1 7%
Student > Master 1 7%
Researcher 1 7%
Other 0 0%
Unknown 6 43%
Readers by discipline Count As %
Psychology 2 14%
Veterinary Science and Veterinary Medicine 1 7%
Nursing and Health Professions 1 7%
Biochemistry, Genetics and Molecular Biology 1 7%
Economics, Econometrics and Finance 1 7%
Other 1 7%
Unknown 7 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 April 2023.
All research outputs
#7,361,271
of 25,808,886 outputs
Outputs from Biology of Sex Differences
#274
of 602 outputs
Outputs of similar age
#128,071
of 419,660 outputs
Outputs of similar age from Biology of Sex Differences
#15
of 24 outputs
Altmetric has tracked 25,808,886 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 602 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.6. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,660 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.