↓ Skip to main content

KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo–YAP pathway

Overview of attention for article published in Cellular & Molecular Biology Letters, April 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo–YAP pathway
Published in
Cellular & Molecular Biology Letters, April 2023
DOI 10.1186/s11658-023-00445-w
Pubmed ID
Authors

Xiaomin Chen, Tiange Lu, Yiqing Cai, Yang Han, Mengfei Ding, Yurou Chu, Xiangxiang Zhou, Xin Wang

Abstract

N6-methyladenosine (m6A) has been shown to participate in various essential biological processes by regulating the level of target genes. However, the function of m6A modification mediated by KIAA1429 [alias virus-like m6A methyltransferase-associated protein (VIRMA)] during the progression of diffuse large B-cell lymphoma (DLBCL) remains undefined. The expression and clinical significance of KIAA1429 were verified by our clinical data. CRISPR/Cas9 mediated KIAA1429 deletion, and CRISPR/dCas9-VP64 for activating endogenous KIAA1429 was used to evaluate its biological function. RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA immunoprecipitation (RIP) assays, luciferase activity assay, RNA stability experiments, and co-immunoprecipitation were performed to investigate the regulatory mechanism of KIAA1429 in DLBCL. Tumor xenograft models were established for in vivo experiments. Dysregulated expression of m6A regulators was observed, and a novel predictive model based on m6A score was established in DLBCL. Additionally, elevated KIAA1429 expression was associated with poor prognosis of patients with DLBCL. Knockout of KIAA1429 repressed DLBCL cell proliferation, facilitated cell cycle arrest in the G2/M phase, induced apoptosis in vitro, and inhibited tumor growth in vivo. Furthermore, carbohydrate sulfotransferase 11 (CHST11) was identified as a downstream target of KIAA1429, which mediated m6A modification of CHST11 mRNA and then recruited YTHDF2 for reducing CHST11 stability and expression. Inhibition of CHST11 diminished MOB1B expression, resulting in inactivation of Hippo-YAP signaling, reprogramming the expression of Hippo target genes. Our results revealed a new mechanism by which the Hippo-YAP pathway in DLBCL is inactivated by KIAA1429/YTHDF2-coupled epitranscriptional repression of CHST11, highlighting the potential of KIAA1429 as a novel predictive biomarker and therapeutic target for DLBCL progression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 33%
Student > Postgraduate 1 33%
Unknown 1 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 1 33%
Medicine and Dentistry 1 33%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 May 2023.
All research outputs
#8,461,237
of 25,870,142 outputs
Outputs from Cellular & Molecular Biology Letters
#67
of 637 outputs
Outputs of similar age
#146,099
of 418,785 outputs
Outputs of similar age from Cellular & Molecular Biology Letters
#3
of 28 outputs
Altmetric has tracked 25,870,142 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 637 research outputs from this source. They receive a mean Attention Score of 2.8. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 418,785 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.