↓ Skip to main content

The impact of metabolic endotoxaemia on the browning process in human adipocytes

Overview of attention for article published in BMC Medicine, April 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
7 news outlets
blogs
4 blogs
twitter
20 X users

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The impact of metabolic endotoxaemia on the browning process in human adipocytes
Published in
BMC Medicine, April 2023
DOI 10.1186/s12916-023-02857-z
Pubmed ID
Authors

Farah Omran, Alice M. Murphy, Awais Z. Younis, Ioannis Kyrou, Jana Vrbikova, Vojtech Hainer, Petra Sramkova, Martin Fried, Graham Ball, Gyanendra Tripathi, Sudhesh Kumar, Philip G. McTernan, Mark Christian

Abstract

Dysfunctional adipose tissue (AT) is known to contribute to the pathophysiology of metabolic disease, including type 2 diabetes mellitus (T2DM). This dysfunction may occur, in part, as a consequence of gut-derived endotoxaemia inducing changes in adipocyte mitochondrial function and reducing the proportion of BRITE (brown-in-white) adipocytes. Therefore, the present study investigated whether endotoxin (lipopolysaccharide; LPS) directly contributes to impaired human adipocyte mitochondrial function and browning in human adipocytes, and the relevant impact of obesity status pre and post bariatric surgery. Human differentiated abdominal subcutaneous (AbdSc) adipocytes from participants with obesity and normal-weight participants were treated with endotoxin to assess in vitro changes in mitochondrial function and BRITE phenotype. Ex vivo human AbdSc AT from different groups of participants (normal-weight, obesity, pre- and 6 months post-bariatric surgery) were assessed for similar analyses including circulating endotoxin levels. Ex vivo AT analysis (lean & obese, weight loss post-bariatric surgery) identified that systemic endotoxin negatively correlated with BAT gene expression (p < 0.05). In vitro endotoxin treatment of AbdSc adipocytes (lean & obese) reduced mitochondrial dynamics (74.6% reduction; p < 0.0001), biogenesis (81.2% reduction; p < 0.0001) and the BRITE phenotype (93.8% reduction; p < 0.0001). Lean AbdSc adipocytes were more responsive to adrenergic signalling than obese AbdSc adipocytes; although endotoxin mitigated this response (92.6% reduction; p < 0.0001). Taken together, these data suggest that systemic gut-derived endotoxaemia contributes to both individual adipocyte dysfunction and reduced browning capacity of the adipocyte cell population, exacerbating metabolic consequences. As bariatric surgery reduces endotoxin levels and is associated with improving adipocyte functionality, this may provide further evidence regarding the metabolic benefits of such surgical interventions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 20%
Lecturer > Senior Lecturer 2 10%
Student > Doctoral Student 2 10%
Professor 2 10%
Student > Ph. D. Student 2 10%
Other 2 10%
Unknown 6 30%
Readers by discipline Count As %
Medicine and Dentistry 5 25%
Biochemistry, Genetics and Molecular Biology 4 20%
Agricultural and Biological Sciences 4 20%
Sports and Recreations 1 5%
Chemical Engineering 1 5%
Other 0 0%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 76. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2023.
All research outputs
#572,210
of 25,738,558 outputs
Outputs from BMC Medicine
#421
of 4,083 outputs
Outputs of similar age
#12,660
of 416,868 outputs
Outputs of similar age from BMC Medicine
#10
of 116 outputs
Altmetric has tracked 25,738,558 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,083 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 46.0. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,868 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.