↓ Skip to main content

Anti-inflammatory effects of clarithromycin in ventilator-induced lung injury

Overview of attention for article published in Respiratory Research, May 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

blogs
1 blog
twitter
7 X users
googleplus
1 Google+ user

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anti-inflammatory effects of clarithromycin in ventilator-induced lung injury
Published in
Respiratory Research, May 2013
DOI 10.1186/1465-9921-14-52
Pubmed ID
Authors

Laura Amado-Rodríguez, Adrián González-López, Inés López-Alonso, Alina Aguirre, Aurora Astudillo, Estefanía Batalla-Solís, Jorge Blazquez-Prieto, Emilio García-Prieto, Guillermo M Albaiceta

Abstract

BACKGROUND: Mechanical ventilation can promote lung injury by triggering a pro-inflammatory response. Macrolides may exert some immunomodulatory effects and have shown significant benefits over other antibiotics in ventilated patients. We hypothesized that macrolides could decrease ventilator-induced lung injury. METHODS: Adult mice were treated with vehicle, clarithromycin or levofloxacin, and randomized to receive mechanical ventilation with low (12 cmH2O, PEEP 2 cmH2O) or high (20 cmH2O, ZEEP) inspiratory pressures for 150 minutes. Histological lung injury, neutrophil infiltration, inflammatory mediators (NFkappaB activation, Cxcl2, IL-10) and levels of adhesion molecules (E-selectin, ICAM) and proteases (MMP-9 and MMP-2) were analyzed. RESULTS: There were no differences among groups after low-pressure ventilation. Clarithromycin significantly decreased lung injury score and neutrophil count, compared to vehicle or levofloxacin, after high-pressure ventilation. Cxcl2 expression and MMP-2 and MMP-9 levels increased and IL-10 decreased after injurious ventilation, with no significant differences among treatment groups. Both clarithromycin and levofloxacin dampened the increase in NFkappaB activation observed in non-treated animals submitted to injurious ventilation. E-selectin levels increased after high pressure ventilation in vehicle- and levofloxacin-treated mice, but not in those receiving clarithromycin. CONCLUSIONS: Clarithromycin ameliorates ventilator-induced lung injury and decreases neutrophil recruitment into the alveolar spaces. This could explain the advantages of macrolides in patients with acute lung injury and mechanical ventilation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 25%
Other 4 13%
Student > Ph. D. Student 4 13%
Professor 3 9%
Student > Postgraduate 2 6%
Other 5 16%
Unknown 6 19%
Readers by discipline Count As %
Medicine and Dentistry 17 53%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Biochemistry, Genetics and Molecular Biology 2 6%
Immunology and Microbiology 2 6%
Agricultural and Biological Sciences 1 3%
Other 2 6%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2020.
All research outputs
#3,261,928
of 25,374,917 outputs
Outputs from Respiratory Research
#399
of 3,062 outputs
Outputs of similar age
#27,002
of 205,453 outputs
Outputs of similar age from Respiratory Research
#2
of 35 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 205,453 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.