↓ Skip to main content

Neurobehavioral sex-related differences in Nf1+/− mice: female show a “camouflaging”-type behavior

Overview of attention for article published in Biology of Sex Differences, April 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neurobehavioral sex-related differences in Nf1+/− mice: female show a “camouflaging”-type behavior
Published in
Biology of Sex Differences, April 2023
DOI 10.1186/s13293-023-00509-8
Pubmed ID
Authors

Sofia Santos, Beatriz Martins, José Sereno, João Martins, Miguel Castelo-Branco, Joana Gonçalves

Abstract

Neurofibromatosis type 1 (NF1) is an inherited neurocutaneous disorder associated with neurodevelopmental disorders including autism spectrum disorder (ASD). This condition has been associated with an increase of gamma-aminobutyric acid (GABA) neurotransmission and, consequently, an excitation/inhibition imbalance associated with autistic-like behavior in both human and animal models. Here, we explored the influence of biological sex in the GABAergic system and behavioral alterations induced by the Nf1+/- mutation in a murine model. Juvenile male and female Nf1+/- mice and their wild-type (WT) littermates were used. Hippocampus size was assessed by conventional toluidine blue staining and structural magnetic resonance imaging (MRI). Hippocampal GABA and glutamate levels were determined by magnetic resonance spectroscopy (MRS), which was complemented by western blot for the GABA(A) receptor. Behavioral evaluation of on anxiety, memory, social communication, and repetitive behavior was performed. We found that juvenile female Nf1+/- mice exhibited increased hippocampal GABA levels. Moreover, mutant female displays a more prominent anxious-like behavior together with better memory performance and social behavior. On the other hand, juvenile Nf1+/- male mice showed increased hippocampal volume and thickness, with a decrease in GABA(A) receptor levels. We observed that mutant males had higher tendency for repetitive behavior. Our results suggested a sexually dimorphic impact of Nf1+/- mutation in hippocampal neurochemistry, and autistic-like behaviors. For the first time, we identified a "camouflaging"-type behavior in females of an animal model of ASD, which masked their autistic traits. Accordingly, like observed in human disorder, in this animal model of ASD, females show larger anxiety levels but better executive functions and production of normative social patterns, together with an imbalance of inhibition/excitation ratio. Contrary, males have more externalizing disorders, such as hyperactivity and repetitive behaviors, with memory deficits. The ability of females to camouflage their autistic traits creates a phenotypic evaluation challenge that mimics the diagnosis difficulty observed in humans. Thus, we propose the study of the Nf1+/- mouse model to better understand the sexual dimorphisms of ASD phenotypes and to create better diagnostic tools.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 21%
Student > Doctoral Student 3 13%
Student > Master 2 8%
Unspecified 1 4%
Student > Ph. D. Student 1 4%
Other 0 0%
Unknown 12 50%
Readers by discipline Count As %
Psychology 3 13%
Engineering 2 8%
Neuroscience 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Arts and Humanities 1 4%
Other 2 8%
Unknown 13 54%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 May 2023.
All research outputs
#5,215,004
of 25,654,806 outputs
Outputs from Biology of Sex Differences
#201
of 592 outputs
Outputs of similar age
#98,585
of 412,029 outputs
Outputs of similar age from Biology of Sex Differences
#9
of 27 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 592 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.9. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 412,029 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.