↓ Skip to main content

Biocontrol of multi-drug resistant pathogenic bacteria in drainage water by locally isolated bacteriophage

Overview of attention for article published in BMC Microbiology, April 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (59th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biocontrol of multi-drug resistant pathogenic bacteria in drainage water by locally isolated bacteriophage
Published in
BMC Microbiology, April 2023
DOI 10.1186/s12866-023-02847-4
Pubmed ID
Authors

Rabab M. Soliman, Badawi A. Othman, Sahar A. Shoman, Mohamed I. Azzam, Marwa M. Gado

Abstract

In areas with limited water resources, the reuse of treated drainage water for non-potable purposes is increasingly recognised as a valuable and sustainable water resource. Numerous pathogenic bacteria found in drainage water have a detrimental impact on public health. The emergence of antibiotic-resistant bacteria and the current worldwide delay in the production of new antibiotics may make the issue of this microbial water pollution even more challenging. This challenge aided the resumption of phage treatment to address this alarming issue. In this study, strains of Escherichia coli and Pseudomonas aeruginosa and their phages were isolated from drainage and surface water from Bahr El-Baqar and El-Manzala Lake in Damietta governorate, Egypt. Bacterial strains were identified by microscopical and biochemical examinations which were confirmed by 16 S rDNA sequencing. The susceptibility of these bacteria to several antibiotics revealed that most of the isolates had multiple antibiotic resistances (MAR). The calculated MAR index values (> 0.25) categorized study sites as potentially hazardous to health. Lytic bacteriophages against these multidrug-resistant strains of E. coli and P. aeruginosa were isolated and characterized. The isolated phages were found to be pH and heat stable and were all members of the Caudovirales order as recognized by the electron microscope. They infect 88.9% of E. coli strains and 100% of P. aeruginosa strains examined. Under laboratory conditions, the use of a phage cocktail resulted in a considerable reduction in bacterial growth. The removal efficiency (%) for E. coli and P. aeruginosa colonies increased with time and maximized at 24 h revealing a nearly 100% reduction after incubation with the phage mixture. The study candidates new phages for detecting and controlling other bacterial pathogens of public health concern to limit water pollution and maintain adequate hygiene.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 10%
Student > Master 2 10%
Professor 1 5%
Lecturer 1 5%
Professor > Associate Professor 1 5%
Other 0 0%
Unknown 13 65%
Readers by discipline Count As %
Immunology and Microbiology 2 10%
Biochemistry, Genetics and Molecular Biology 2 10%
Environmental Science 1 5%
Agricultural and Biological Sciences 1 5%
Engineering 1 5%
Other 0 0%
Unknown 13 65%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2023.
All research outputs
#14,548,949
of 25,801,916 outputs
Outputs from BMC Microbiology
#1,231
of 3,524 outputs
Outputs of similar age
#164,104
of 414,123 outputs
Outputs of similar age from BMC Microbiology
#12
of 69 outputs
Altmetric has tracked 25,801,916 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,524 research outputs from this source. They receive a mean Attention Score of 4.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 414,123 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.
We're also able to compare this research output to 69 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.