↓ Skip to main content

Enhancement of wound closure in diabetic mice by ex vivo expanded cord blood CD34+ cells

Overview of attention for article published in Cellular & Molecular Biology Letters, May 2013
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhancement of wound closure in diabetic mice by ex vivo expanded cord blood CD34+ cells
Published in
Cellular & Molecular Biology Letters, May 2013
DOI 10.2478/s11658-013-0089-9
Pubmed ID
Authors

Kamonnaree Chotinantakul, Chavaboon Dechsukhum, Duangnapa Dejjuy, Wilairat Leeanansaksiri

Abstract

Diabetes can impair wound closure, which can give rise to major clinical problems. Most treatments for wound repair in diabetes remain ineffective. This study aimed to investigate the influence on wound closure of treatments using expanded human cord blood CD34(+) cells (CB-CD34(+) cells), freshly isolated CB-CD34(+) cells and a cytokine cocktail. The test subjects were mice with streptozotocin-induced diabetes. Wounds treated with fresh CB-CD34(+) cells showed more rapid repair than mice given the PBS control. Injection of expanded CB-CD34(+) cells improved wound closure significantly, whereas the injection of the cytokine cocktail alone did not improve wound repair. The results also demonstrated a significant decrease in epithelial gaps and advanced re-epithelialization over the wound bed area after treatment with either expanded CB-CD34(+) cells or freshly isolated cells compared with the control. In addition, treatments with both CB-CD34(+) cells and the cytokine cocktail were shown to promote recruitment of CD31(+)-endothelial cells in the wounds. Both the CB-CD34(+) cell population and the cytokine treatments also enhanced the recruitment of CD68-positive cells in the early stages (day 3) of treatment compared with PBS control, although the degree of this enhancement was found to decline in the later stages (day 9). These results demonstrated that expanded CB-CD34(+) cells or freshly isolated CB-CD34(+) cells could accelerate wound repair by increasing the recruitment of macrophages and capillaries and the reepithelialization over the wound bed area. Our data suggest an effective role in wound closure for both ex vivo expanded CB-CD34(+) cells and freshly isolated cells, and these may serve as therapeutic options for wound treatment for diabetic patients. Wound closure acceleration by expanded CB-CD34(+) cells also breaks the insufficient quantity obstacle of stem cells per unit of cord blood and other stem cell sources, which indicates a broader potential for autologous transplantation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 28%
Student > Bachelor 4 22%
Student > Doctoral Student 2 11%
Researcher 2 11%
Other 1 6%
Other 0 0%
Unknown 4 22%
Readers by discipline Count As %
Medicine and Dentistry 8 44%
Agricultural and Biological Sciences 2 11%
Engineering 2 11%
Immunology and Microbiology 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Other 0 0%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2013.
All research outputs
#19,962,154
of 25,394,764 outputs
Outputs from Cellular & Molecular Biology Letters
#258
of 606 outputs
Outputs of similar age
#151,007
of 207,093 outputs
Outputs of similar age from Cellular & Molecular Biology Letters
#4
of 4 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 606 research outputs from this source. They receive a mean Attention Score of 2.8. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 207,093 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.