↓ Skip to main content

Benchmark of tools for in silico prediction of MHC class I and class II genotypes from NGS data

Overview of attention for article published in BMC Genomics, May 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Benchmark of tools for in silico prediction of MHC class I and class II genotypes from NGS data
Published in
BMC Genomics, May 2023
DOI 10.1186/s12864-023-09351-z
Pubmed ID
Authors

Arne Claeys, Peter Merseburger, Jasper Staut, Kathleen Marchal, Jimmy Van den Eynden

Abstract

The Human Leukocyte Antigen (HLA) genes are a group of highly polymorphic genes that are located in the Major Histocompatibility Complex (MHC) region on chromosome 6. The HLA genotype affects the presentability of tumour antigens to the immune system. While knowledge of these genotypes is of utmost importance to study differences in immune responses between cancer patients, gold standard, PCR-derived genotypes are rarely available in large Next Generation Sequencing (NGS) datasets. Therefore, a variety of methods for in silico NGS-based HLA genotyping have been developed, bypassing the need to determine these genotypes with separate experiments. However, there is currently no consensus on the best performing tool. We evaluated 13 MHC class I and/or class II HLA callers that are currently available for free academic use and run on either Whole Exome Sequencing (WES) or RNA sequencing data. Computational resource requirements were highly variable between these tools. Three orthogonal approaches were used to evaluate the accuracy on several large publicly available datasets: a direct benchmark using PCR-derived gold standard HLA calls, a correlation analysis with population-based allele frequencies and an analysis of the concordance between the different tools. The highest MHC-I calling accuracies were found for Optitype (98.0%) and arcasHLA (99.4%) on WES and RNA sequencing data respectively, while for MHC-II HLA-HD was the most accurate tool for both data types (96.2% and 99.4% on WES and RNA data respectively). The optimal strategy for HLA genotyping from NGS data depends on the availability of either WES or RNA data, the size of the dataset and the available computational resources. If sufficient resources are available, we recommend Optitype and HLA-HD for MHC-I and MHC-II genotype calling respectively.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 30%
Researcher 5 19%
Unspecified 2 7%
Student > Master 2 7%
Student > Bachelor 1 4%
Other 2 7%
Unknown 7 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 33%
Unspecified 2 7%
Medicine and Dentistry 2 7%
Computer Science 2 7%
Agricultural and Biological Sciences 1 4%
Other 2 7%
Unknown 9 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2023.
All research outputs
#14,168,659
of 23,854,458 outputs
Outputs from BMC Genomics
#5,183
of 10,839 outputs
Outputs of similar age
#139,017
of 320,942 outputs
Outputs of similar age from BMC Genomics
#35
of 111 outputs
Altmetric has tracked 23,854,458 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,839 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,942 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.