↓ Skip to main content

Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti

Overview of attention for article published in Parasites & Vectors, May 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

twitter
29 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti
Published in
Parasites & Vectors, May 2023
DOI 10.1186/s13071-023-05778-1
Pubmed ID
Authors

Daniel Chieh-Ding Lin, Shih-Che Weng, Po-Nien Tsao, Justin Jang Hann Chu, Shin-Hong Shiao

Abstract

The mosquito Aedes aegypti transmits two of the most serious mosquito-borne viruses, dengue virus (DENV) and Zika virus (ZIKV), which results in significant human morbidity and mortality worldwide. The quickly shifting landscapes of DENV and ZIKV endemicity worldwide raise concerns that their co-circulation through the Ae. aegypti mosquito vector could greatly exacerbate the disease burden in humans. Recent reports have indicated an increase in the number of co-infection cases in expanding co-endemic regions; however, the impact of co-infection on viral infection and the detailed molecular mechanisms remain to be defined. C6/36 (Aedes albopictus) cells were cultured in Dulbecco's modified Eagle medium/Mitsuhashi and Maramorosch Insect Medium (DMEM/MM) (1:1) containing 2% heat-inactivated fetal bovine serum and 1× penicillin/streptomycin solution. For virus propagation, the cells were infected with either DENV serotype 2 (DENV2) strain 16681 or ZIKV isolate Thailand/1610acTw (MF692778.1). Mosquitoes (Ae. aegypti UGAL [University of Georgia Laboratory]/Rockefeller strain) were orally infected with DENV2 and ZIKV through infectious blood-feeding. We first examined viral replication activity in cells infected simultaneously, or sequentially, with DENV and ZIKV, and found interspecies binding of viral genomic transcripts to the non-structural protein 5 (NS5). When we challenged Ae. aegypti mosquitos with both DENV2 and ZIKV sequentially to probe similar interactions, virus production and vector susceptibility to infection were significantly enhanced. Our results suggest that DENV2 and ZIKV simultaneously establishing infection in the Ae. aegypti mosquito vector may augment one another during replication. The data also implicate the homologous NS5 protein as a key intersection between the flaviviruses in co-infection, highlighting it as a potential target for vector control.

X Demographics

X Demographics

The data shown below were collected from the profiles of 29 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 14%
Student > Ph. D. Student 4 14%
Researcher 2 7%
Student > Postgraduate 1 4%
Professor > Associate Professor 1 4%
Other 1 4%
Unknown 15 54%
Readers by discipline Count As %
Unspecified 3 11%
Medicine and Dentistry 3 11%
Agricultural and Biological Sciences 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Immunology and Microbiology 1 4%
Other 1 4%
Unknown 17 61%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2023.
All research outputs
#2,109,142
of 25,920,652 outputs
Outputs from Parasites & Vectors
#359
of 6,109 outputs
Outputs of similar age
#41,122
of 406,977 outputs
Outputs of similar age from Parasites & Vectors
#5
of 92 outputs
Altmetric has tracked 25,920,652 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,109 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 406,977 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 92 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.