↓ Skip to main content

Biomechanical comparative study of midline cortical vs. traditional pedicle screw trajectory in osteoporotic bone

Overview of attention for article published in BMC Musculoskeletal Disorders, May 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biomechanical comparative study of midline cortical vs. traditional pedicle screw trajectory in osteoporotic bone
Published in
BMC Musculoskeletal Disorders, May 2023
DOI 10.1186/s12891-023-06502-x
Pubmed ID
Authors

Stefan Schleifenbaum, Ann-Cathrin Vogl, Robin Heilmann, Nicolas Heinz von der Hoeh, Christoph-Eckhard Heyde, Jan-Sven Jarvers

Abstract

In lumbar spinal stabilization pedicle screws are used as standard. However, especially in osteoporosis, screw anchorage is a problem. Cortical bone trajectory (CBT) is an alternative technique designed to increase stability without the use of cement. In this regard, comparative studies showed biomechanical superiority of the MC (midline cortical bone trajectory) technique with longer cortical progression over the CBT technique. The aim of this biomechanical study was to comparatively investigate the MC technique against the not cemented pedicle screws (TT) in terms of their pullout forces and anchorage properties during sagittal cyclic loading according to the ASTM F1717 test. Five cadavers (L1 to L5), whose mean age was 83.3 ± 9.9 years and mean T Score of -3.92 ± 0.38, were dissected and the vertebral bodies embedded in polyurethane casting resin. Then, one screw was randomly inserted into each vertebra using a template according to the MC technique and a second one was inserted by freehand technique with traditional trajectory (TT). The screws were quasi-static extracted from vertebrae L1 and L3, while for L2, L4 and L5 they were first tested dynamically according to ASTM standard F1717 (10,000 cycles at 1 Hz between 10 and 110 N) and then quasi-static extracted. In order to determine possible screw loosening, there movements were recorded during the dynamic tests using an optical measurement system. The pull-out tests show a higher pull-out strength for the MC technique of 555.4 ± 237.0 N compared to the TT technique 448.8 ± 303.2 N. During the dynamic tests (L2, L4, L5), 8 out of the 15 TT screws became loose before completing 10,000 cycles. In contrast, all 15 MC screws did not exceed the termination criterion and were thus able to complete the full test procedure. For the runners, the optical measurement showed greater relative movement of the TT variant compared to the MC variant. The pull-out tests also revealed that the MC variant had a higher pull-out strength, measuring at766.7 ± 385.4 N, while the TT variant measured 637.4 ± 435.6 N. The highest pullout forces were achieved by the MC technique. The main difference between the techniques was observed in the dynamic measurements, where the MC technique exhibited superior primary stability compared to the conventional technique in terms of primary stability. Overall, the MC technique in combination with template-guided insertion represents the best alternative for anchoring screws in osteoporotic bone without cement.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 1 13%
Student > Master 1 13%
Other 1 13%
Unknown 5 63%
Readers by discipline Count As %
Medicine and Dentistry 2 25%
Engineering 1 13%
Unknown 5 63%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2023.
All research outputs
#14,597,518
of 24,493,651 outputs
Outputs from BMC Musculoskeletal Disorders
#2,062
of 4,289 outputs
Outputs of similar age
#162,220
of 370,365 outputs
Outputs of similar age from BMC Musculoskeletal Disorders
#34
of 85 outputs
Altmetric has tracked 24,493,651 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,289 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 370,365 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.