↓ Skip to main content

A new profiling approach for DNA sequences based on the nucleotides' physicochemical features for accurate analysis of SARS-CoV-2 genomes

Overview of attention for article published in BMC Genomics, May 2023
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A new profiling approach for DNA sequences based on the nucleotides' physicochemical features for accurate analysis of SARS-CoV-2 genomes
Published in
BMC Genomics, May 2023
DOI 10.1186/s12864-023-09373-7
Pubmed ID
Authors

Saeedeh Akbari Rokn Abadi, Amirhossein Mohammadi, Somayyeh Koohi

Abstract

The prevalence of the COVID-19 disease in recent years and its widespread impact on mortality, as well as various aspects of life around the world, has made it important to study this disease and its viral cause. However, very long sequences of this virus increase the processing time, complexity of calculation, and memory consumption required by the available tools to compare and analyze the sequences. We present a new encoding method, named PC-mer, based on the k-mer and physic-chemical properties of nucleotides. This method minimizes the size of encoded data by around 2 k times compared to the classical k-mer based profiling method. Moreover, using PC-mer, we designed two tools: 1) a machine-learning-based classification tool for coronavirus family members with the ability to recive input sequences from the NCBI database, and 2) an alignment-free computational comparison tool for calculating dissimilarity scores between coronaviruses at the genus and species levels. PC-mer achieves 100% accuracy despite the use of very simple classification algorithms based on Machine Learning. Assuming dynamic programming-based pairwise alignment as the ground truth approach, we achieved a degree of convergence of more than 98% for coronavirus genus-level sequences and 93% for SARS-CoV-2 sequences using PC-mer in the alignment-free classification method. This outperformance of PC-mer suggests that it can serve as a replacement for alignment-based approaches in certain sequence analysis applications that rely on similarity/dissimilarity scores, such as searching sequences, comparing sequences, and certain types of phylogenetic analysis methods that are based on sequence comparison.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 2 29%
Researcher 2 29%
Student > Master 1 14%
Unknown 2 29%
Readers by discipline Count As %
Unspecified 2 29%
Biochemistry, Genetics and Molecular Biology 1 14%
Sports and Recreations 1 14%
Social Sciences 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2023.
All research outputs
#20,190,425
of 24,820,264 outputs
Outputs from BMC Genomics
#8,598
of 11,077 outputs
Outputs of similar age
#274,872
of 373,711 outputs
Outputs of similar age from BMC Genomics
#108
of 138 outputs
Altmetric has tracked 24,820,264 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,077 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 373,711 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.