↓ Skip to main content

Prevalence of mutations in the cysteine desulfurase IscS (Pfnfs1) gene in recurrent Plasmodium falciparum infections following artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP…

Overview of attention for article published in Malaria Journal, May 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prevalence of mutations in the cysteine desulfurase IscS (Pfnfs1) gene in recurrent Plasmodium falciparum infections following artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) treatment in Matayos, Western Kenya
Published in
Malaria Journal, May 2023
DOI 10.1186/s12936-023-04587-2
Pubmed ID
Authors

Beatrice Gachie, Kelvin Thiong’o, Brenda Muriithi, Jean Chepngetich, Noah Onchieku, Jeremiah Gathirwa, Peter Mwitari, Gabriel Magoma, Daniel Kiboi, Francis Kimani

Abstract

Malaria remains a public health concern globally. Resistance to anti-malarial drugs has consistently threatened the gains in controlling the malaria parasites. Currently, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the treatment regimens against Plasmodium falciparum infections in many African countries, including Kenya. Recurrent infections have been reported in patients treated with AL or DP, suggesting the possibility of reinfection or parasite recrudescence associated with the development of resistance against the two therapies. The Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) K65 selection marker has previously been associated with decreased lumefantrine susceptibility. This study evaluated the frequency of the Pfnfs1 K65 resistance marker and associated K65Q resistant allele in recurrent infections collected from P. falciparum-infected individuals living in Matayos, Busia County, in western Kenya. Archived dried blood spots (DBS) of patients with recurrent malaria infection on clinical follow-up days after treatment with either AL or DP were used in the study. After extraction of genomic DNA, PCR amplification and sequencing analysis were employed to determine the frequencies of the Pfnfs1 K65 resistance marker and K65Q mutant allele in the recurrent infections. Plasmodium falciparum msp1 and P. falciparum msp2 genetic markers were used to distinguish recrudescent infections from new infections. The K65 wild-type allele was detected at a frequency of 41% while the K65Q mutant allele was detected at a frequency of 22% in the recurrent samples. 58% of the samples containing the K65 wild-type allele were AL treated samples and while 42% were DP treated samples. 79% of the samples with the K65Q mutation were AL treated samples and 21% were DP treated samples. The K65 wild-type allele was detected in three recrudescent infections (100%) identified from the AL treated samples. The K65 wild-type allele was detected in two recrudescent DP treated samples (67%) while the K65Q mutant allele was identified in one DP treated (33%) recrudescent sample. The data demonstrate a higher frequency of the K65 resistance marker in patients with recurrent infection during the study period. The study underscores the need for consistent monitoring of molecular markers of resistance in regions of high malaria transmission.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 1 9%
Student > Master 1 9%
Student > Ph. D. Student 1 9%
Researcher 1 9%
Unknown 7 64%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 18%
Pharmacology, Toxicology and Pharmaceutical Science 1 9%
Agricultural and Biological Sciences 1 9%
Unknown 7 64%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2023.
All research outputs
#14,735,154
of 24,826,104 outputs
Outputs from Malaria Journal
#3,486
of 5,814 outputs
Outputs of similar age
#162,240
of 373,048 outputs
Outputs of similar age from Malaria Journal
#57
of 90 outputs
Altmetric has tracked 24,826,104 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,814 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 373,048 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.