↓ Skip to main content

Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, May 2023
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1
Published in
Journal of Experimental & Clinical Cancer Research, May 2023
DOI 10.1186/s13046-023-02684-3
Pubmed ID
Authors

Jianglin Zheng, Qing Zhang, Zhen Zhao, Yue Qiu, Yujie Zhou, Zhipeng Wu, Cheng Jiang, Xuan Wang, Xiaobing Jiang

Abstract

Ferroptosis has been linked to tumor progression and resistance to antineoplastic therapy. Long noncoding RNA (lncRNA) exerts a regulatory role in various biological processes of tumor cells, while the function and molecular mechanism of lncRNA in ferroptosis are yet to be clarified in glioma. Both gain-of-function and loss-of-function experiments were employed to investigate the effects of SNAI3-AS1 on the tumorigenesis and ferroptosis susceptibility of glioma in vitro and in vivo. Bioinformatics analysis, Bisulfite sequencing PCR, RNA pull-down, RIP, MeRIP and dual-luciferase reporter assay were performed to explore the low expression mechanism of SNAI3-AS1 and the downstream mechanism of SNAI3-AS1 in ferroptosis susceptibility of glioma. We found that ferroptosis inducer erastin downregulates SNAI3-AS1 expression in glioma by increasing the DNA methylation level of SNAI3-AS1 promoter. SNAI3-AS1 functions as a tumor suppressor in glioma. Importantly, SNAI3-AS1 enhances the anti-tumor activity of erastin by promoting ferroptosis both in vitro and in vivo. Mechanistically, SNAI3-AS1 competitively binds to SND1 and perturbs the m6A-dependent recognition of Nrf2 mRNA 3'UTR by SND1, thereby reducing the mRNA stability of Nrf2. Rescue experiments confirmed that SND1 overexpression and silence can rescue the gain- and loss-of-function ferroptotic phenotypes of SNAI3-AS1, respectively. Our findings elucidate the effect and detailed mechanism of SNAI3-AS1/SND1/Nrf2 signalling axis in ferroptosis, and provide a theoretical support for inducing ferroptosis to improve glioma treatment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Lecturer 1 14%
Student > Doctoral Student 1 14%
Unknown 5 71%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 14%
Neuroscience 1 14%
Medicine and Dentistry 1 14%
Unknown 4 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2023.
All research outputs
#22,778,604
of 25,394,764 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#1,972
of 2,384 outputs
Outputs of similar age
#330,449
of 390,019 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#49
of 53 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,384 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,019 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.