↓ Skip to main content

Microbial production of next-generation stevia sweeteners

Overview of attention for article published in Microbial Cell Factories, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
3 X users
patent
4 patents

Citations

dimensions_citation
103 Dimensions

Readers on

mendeley
172 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbial production of next-generation stevia sweeteners
Published in
Microbial Cell Factories, December 2016
DOI 10.1186/s12934-016-0609-1
Pubmed ID
Authors

Kim Olsson, Simon Carlsen, Angelika Semmler, Ernesto Simón, Michael Dalgaard Mikkelsen, Birger Lindberg Møller

Abstract

The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13- and C 19-bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis pathway represents a significant step towards the commercial production of next-generation stevia sweeteners.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 172 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Greece 1 <1%
China 1 <1%
Unknown 169 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 33 19%
Student > Ph. D. Student 28 16%
Student > Master 23 13%
Student > Bachelor 14 8%
Student > Postgraduate 9 5%
Other 28 16%
Unknown 37 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 48 28%
Agricultural and Biological Sciences 44 26%
Chemical Engineering 8 5%
Chemistry 6 3%
Engineering 5 3%
Other 16 9%
Unknown 45 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2023.
All research outputs
#3,811,156
of 23,556,846 outputs
Outputs from Microbial Cell Factories
#182
of 1,662 outputs
Outputs of similar age
#73,195
of 423,102 outputs
Outputs of similar age from Microbial Cell Factories
#4
of 33 outputs
Altmetric has tracked 23,556,846 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,662 research outputs from this source. They receive a mean Attention Score of 4.6. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,102 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.