↓ Skip to main content

SwitchFinder – a novel method and query facility for discovering dynamic gene expression patterns

Overview of attention for article published in BMC Bioinformatics, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
SwitchFinder – a novel method and query facility for discovering dynamic gene expression patterns
Published in
BMC Bioinformatics, December 2016
DOI 10.1186/s12859-016-1391-0
Pubmed ID
Authors

Svetlana Bulashevska, Colin Priest, Daniel Speicher, Jörg Zimmermann, Frank Westermann, Armin B. Cremers

Abstract

Biological systems and processes are highly dynamic. To gain insights into their functioning time-resolved measurements are necessary. Time-resolved gene expression data captures temporal behaviour of the genes genome-wide under various biological conditions: in response to stimuli, during cell cycle, differentiation or developmental programs. Dissecting dynamic gene expression patterns from this data may shed light on the functioning of the gene regulatory system. The present approach facilitates this discovery. The fundamental idea behind it is the following: there are change-points (switches) in the gene behaviour separating intervals of increasing and decreasing activity, whereas the intervals may have different durations. Elucidating the switch-points is important for the identification of biologically meanigfull features and patterns of the gene dynamics. We developed a statistical method, called SwitchFinder, for the analysis of time-series data, in particular gene expression data, based on a change-point model. Fitting the model to the gene expression time-courses indicates switch-points between increasing and decreasing activities of each gene. Two types of the model - based on linear and on generalized logistic function - were used to capture the data between the switch-points. Model inference was facilitated with the Bayesian methodology using Markov chain Monte Carlo (MCMC) technique Gibbs sampling. Further on, we introduced features of the switch-points: growth, decay, spike and cleft, which reflect important dynamic aspects. With this, the gene expression profiles are represented in a qualitative manner - as sets of the dynamic features at their onset-times. We developed a Web application of the approach, enabling to put queries to the gene expression time-courses and to deduce groups of genes with common dynamic patterns. SwitchFinder was applied to our original data - the gene expression time-series measured in neuroblastoma cell line upon treatment with all-trans retinoic acid (ATRA). The analysis revealed eight patterns of the gene expression responses to ATRA, indicating the induction of the BMP, WNT, Notch, FGF and NTRK-receptor signaling pathways involved in cell differentiation, as well as the repression of the cell-cycle related genes. SwitchFinder is a novel approach to the analysis of biological time-series data, supporting inference and interactive exploration of its inherent dynamic patterns, hence facilitating biological discovery process. SwitchFinder is freely available at https://newbioinformatics.eu/switchfinder.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 30%
Student > Ph. D. Student 4 15%
Student > Bachelor 2 7%
Professor > Associate Professor 2 7%
Student > Master 2 7%
Other 1 4%
Unknown 8 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 15%
Computer Science 4 15%
Engineering 3 11%
Medicine and Dentistry 3 11%
Mathematics 2 7%
Other 3 11%
Unknown 8 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2017.
All research outputs
#14,886,233
of 22,919,505 outputs
Outputs from BMC Bioinformatics
#5,064
of 7,306 outputs
Outputs of similar age
#242,176
of 420,955 outputs
Outputs of similar age from BMC Bioinformatics
#69
of 132 outputs
Altmetric has tracked 22,919,505 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,306 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,955 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 132 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.