↓ Skip to main content

Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging

Overview of attention for article published in Journal of Nanobiotechnology, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

googleplus
1 Google+ user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging
Published in
Journal of Nanobiotechnology, December 2016
DOI 10.1186/s12951-016-0239-0
Pubmed ID
Authors

Heba Asem, Ying Zhao, Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Ramy El-Sayed, Ibrahim El-Serafi, Khalid M. Abu-Salah, Jörg Hamm, Mamoun Muhammed, Moustapha Hassan

Abstract

Multifunctional nanocarriers for controlled drug delivery, imaging of disease development and follow-up of treatment efficacy are promising novel tools for disease diagnosis and treatment. In the current investigation, we present a multifunctional theranostic nanocarrier system for anticancer drug delivery and molecular imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent and busulphan as a model for lipophilic antineoplastic drugs were encapsulated into poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) micelles via the emulsion-evaporation method, and PEG-PCL was labelled with VivoTag 680XL fluorochrome for in vivo fluorescence imaging. Busulphan entrapment efficiency was 83% while the drug release showed a sustained pattern over 10 h. SPION loaded-PEG-PCL micelles showed contrast enhancement in T 2 *-weighted MRI with high r 2* relaxivity. In vitro cellular uptake of PEG-PCL micelles labeled with fluorescein in J774A cells was found to be time-dependent. The maximum uptake was observed after 24 h of incubation. The biodistribution of PEG-PCL micelles functionalized with VivoTag 680XL was investigated in Balb/c mice over 48 h using in vivo fluorescence imaging. The results of real-time live imaging were then confirmed by ex vivo organ imaging and histological examination. Generally, PEG-PCL micelles were highly distributed into the lungs during the first 4 h post intravenous administration, then redistributed and accumulated in liver and spleen until 48 h post administration. No pathological impairment was found in the major organs studied. Thus, with loaded contrast agent and conjugated fluorochrome, PEG-PCL micelles as biodegradable and biocompatible nanocarriers are efficient multimodal imaging agents, offering high drug loading capacity, and sustained drug release. These might offer high treatment efficacy and real-time tracking of the drug delivery system in vivo, which is crucial for designing of an efficient drug delivery system.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 23%
Student > Ph. D. Student 11 23%
Other 5 10%
Student > Bachelor 4 8%
Student > Doctoral Student 2 4%
Other 4 8%
Unknown 11 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 15%
Medicine and Dentistry 6 13%
Pharmacology, Toxicology and Pharmaceutical Science 5 10%
Chemistry 4 8%
Psychology 3 6%
Other 8 17%
Unknown 15 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 December 2016.
All research outputs
#15,416,191
of 22,925,760 outputs
Outputs from Journal of Nanobiotechnology
#658
of 1,426 outputs
Outputs of similar age
#256,210
of 420,442 outputs
Outputs of similar age from Journal of Nanobiotechnology
#4
of 6 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,426 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,442 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.