↓ Skip to main content

A GATA2-CDC6 axis modulates androgen receptor blockade-induced senescence in prostate cancer

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, July 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A GATA2-CDC6 axis modulates androgen receptor blockade-induced senescence in prostate cancer
Published in
Journal of Experimental & Clinical Cancer Research, July 2023
DOI 10.1186/s13046-023-02769-z
Pubmed ID
Authors

Ioanna Mourkioti, Aikaterini Polyzou, Dimitris Veroutis, George Theocharous, Nefeli Lagopati, Emanuela Gentile, Vasiliki Stravokefalou, Dimitris-Foivos Thanos, Sophia Havaki, Dimitris Kletsas, Theocharis Panaretakis, Christopher J. Logothetis, Dimitris Stellas, Russell Petty, Giovanni Blandino, Angelos Papaspyropoulos, Vassilis G. Gorgoulis

Abstract

Prostate cancer is a major cause of cancer morbidity and mortality in men worldwide. Androgen deprivation therapy (ADT) has proven effective in early-stage androgen-sensitive disease, but prostate cancer gradually develops into an androgen-resistant metastatic state in the vast majority of patients. According to our oncogene-induced model for cancer development, senescence is a major tumor progression barrier. However, whether senescence is implicated in the progression of early-stage androgen-sensitive to highly aggressive castration-resistant prostate cancer (CRPC) remains poorly addressed. Androgen-dependent (LNCaP) and -independent (C4-2B and PC-3) cells were treated or not with enzalutamide, an Androgen Receptor (AR) inhibitor. RNA sequencing and pathway analyses were carried out in LNCaP cells to identify potential senescence regulators upon treatment. Assessment of the invasive potential of cells and senescence status following enzalutamide treatment and/or RNAi-mediated silencing of selected targets was performed in all cell lines, complemented by bioinformatics analyses on a wide range of in vitro and in vivo datasets. Key observations were validated in LNCaP and C4-2B mouse xenografts. Senescence induction was assessed by state-of-the-art GL13 staining by immunocytochemistry and confocal microscopy. We demonstrate that enzalutamide treatment induces senescence in androgen-sensitive cells via reduction of the replication licensing factor CDC6. Mechanistically, we show that CDC6 downregulation is mediated through endogenous activation of the GATA2 transcription factor functioning as a CDC6 repressor. Intriguingly, GATA2 levels decrease in enzalutamide-resistant cells, leading to CDC6 stabilization accompanied by activation of Epithelial-To-Mesenchymal Transition (EMT) markers and absence of senescence. We show that CDC6 loss is sufficient to reverse oncogenic features and induce senescence regardless of treatment responsiveness, thereby identifying CDC6 as a critical determinant of prostate cancer progression. We identify a key GATA2-CDC6 signaling axis which is reciprocally regulated in enzalutamide-sensitive and -resistant prostate cancer environments. Upon acquired resistance, GATA2 repression leads to CDC6 stabilization, with detrimental effects in disease progression through exacerbation of EMT and abrogation of senescence. However, bypassing the GATA2-CDC6 axis by direct inhibition of CDC6 reverses oncogenic features and establishes senescence, thereby offering a therapeutic window even after acquiring resistance to therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 29%
Student > Master 1 14%
Unknown 4 57%
Readers by discipline Count As %
Medicine and Dentistry 2 29%
Biochemistry, Genetics and Molecular Biology 1 14%
Unknown 4 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2023.
All research outputs
#7,310,010
of 25,394,764 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#436
of 2,384 outputs
Outputs of similar age
#111,578
of 359,563 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#9
of 72 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 2,384 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,563 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 72 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.