↓ Skip to main content

Effect of active vitamin D3 on VEGF-induced ADAM33 expression and proliferation in human airway smooth muscle cells: implications for asthma treatment

Overview of attention for article published in Respiratory Research, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of active vitamin D3 on VEGF-induced ADAM33 expression and proliferation in human airway smooth muscle cells: implications for asthma treatment
Published in
Respiratory Research, January 2017
DOI 10.1186/s12931-016-0490-9
Pubmed ID
Authors

Sung-Ho Kim, Qing-Mei Pei, Ping Jiang, Min Yang, Xue-Jiao Qian, Jiang-Bo Liu

Abstract

Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling, which is associated with increased airway smooth muscle (ASM) mass. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthma. Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) may influence asthma pathogenesis. A disintegrin and metalloproteinase (ADAM)33 has been identified as playing a role in the pathophysiology of asthma. ADAM33, which is expressed in ASM cells, is suggested to play a role in the function of these cells. Recent studies show that 1,25-(OH)2D3 exerts direct inhibitory effects on passively sensitized human ASM cells in vitro, including inhibition of ADAM33 expression and cell proliferation; however, the mechanism has not been fully understood. In order to elucidate the precise mechanism underlying the effect of 1,25(OH)2D3 on VEGF-induced ADAM33 expression and ASM cell proliferation, we tested the effects of 1,25(OH)2D3 on cell cycle progression and evaluated the levels of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that 1,25(OH)2D3 inhibited VEGF-induced ADAM33 expression and ASM cell proliferation, as well as cell cycle arrest. Additionally, VEGF-induced ADAM33 expression and ASM cell proliferation was suppressed via inhibition of ERK1/2 activity, but not that of Akt. Furthermore, 1,25(OH)2D3 treatment inhibited VEGF-induced activation of VEGFR2 as well as that of ERK and Akt in a concentration-dependent manner. 1,25(OH)2D3 also inhibited transforming growth factor (TGF)-β-induced VEGF secretion by ASM cells. Collectively, our findings suggest that 1,25(OH)2D3 inhibits VEGF-induced ASM cell proliferation by suppressing VEGFR2 and ERK1/2 activation and downregulating ADAM33. Further studies of these mechanisms are needed to facilitate the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 22%
Student > Ph. D. Student 5 14%
Researcher 5 14%
Student > Postgraduate 4 11%
Professor > Associate Professor 3 8%
Other 4 11%
Unknown 8 22%
Readers by discipline Count As %
Medicine and Dentistry 8 22%
Nursing and Health Professions 5 14%
Agricultural and Biological Sciences 5 14%
Pharmacology, Toxicology and Pharmaceutical Science 3 8%
Immunology and Microbiology 2 5%
Other 4 11%
Unknown 10 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 February 2018.
All research outputs
#16,721,717
of 25,374,647 outputs
Outputs from Respiratory Research
#2,055
of 3,062 outputs
Outputs of similar age
#254,935
of 421,665 outputs
Outputs of similar age from Respiratory Research
#30
of 49 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,665 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.