↓ Skip to main content

Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice

Overview of attention for article published in BMC Neuroscience, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice
Published in
BMC Neuroscience, January 2017
DOI 10.1186/s12868-016-0332-1
Pubmed ID
Authors

Anna Zettergren, Sara Karlsson, Erik Studer, Anna Sarvimäki, Petronella Kettunen, Annika Thorsell, Carina Sihlbom, Lars Westberg

Abstract

It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (AR(NesDel)) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between AR(NesDel) and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 21%
Professor > Associate Professor 3 16%
Student > Master 3 16%
Researcher 2 11%
Unknown 7 37%
Readers by discipline Count As %
Neuroscience 4 21%
Agricultural and Biological Sciences 4 21%
Biochemistry, Genetics and Molecular Biology 2 11%
Medicine and Dentistry 1 5%
Psychology 1 5%
Other 0 0%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2017.
All research outputs
#13,277,312
of 22,925,760 outputs
Outputs from BMC Neuroscience
#530
of 1,248 outputs
Outputs of similar age
#206,311
of 420,807 outputs
Outputs of similar age from BMC Neuroscience
#9
of 36 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,248 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,807 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.