↓ Skip to main content

Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis

Overview of attention for article published in Molecular Neurodegeneration, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis
Published in
Molecular Neurodegeneration, January 2017
DOI 10.1186/s13024-016-0145-9
Pubmed ID
Authors

Eiichi Tokuda, Itsuki Anzai, Takao Nomura, Keisuke Toichi, Masahiko Watanabe, Shinji Ohara, Seiji Watanabe, Koji Yamanaka, Yuta Morisaki, Hidemi Misawa, Yoshiaki Furukawa

Abstract

Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS) with accumulation of misfolded SOD1 proteins as intracellular inclusions in spinal motor neurons. Oligomerization of SOD1 via abnormal disulfide crosslinks has been proposed as one of the misfolding pathways occurring in mutant SOD1; however, the pathological relevance of such oligomerization in the SOD1-ALS cases still remains obscure. We prepared antibodies exclusively recognizing the SOD1 oligomers cross-linked via disulfide bonds in vitro. By using those antibodies, immunohistochemical examination and ELISA were mainly performed on the tissue samples of transgenic mice expressing mutant SOD1 proteins and also of human SOD1-ALS cases. We showed the recognition specificity of our antibodies exclusively toward the disulfide-crosslinked SOD1 oligomers by ELISA using various forms of purified SOD1 proteins in conformationally distinct states in vitro. Furthermore, the epitope of those antibodies was buried and inaccessible in the natively folded structure of SOD1. The antibodies were then found to specifically detect the pathological SOD1 species in the spinal motor neurons of the SOD1-ALS patients as well as the transgenic model mice. Our findings here suggest that the SOD1 oligomerization through the disulfide-crosslinking associates with exposure of the SOD1 structural interior and is a pathological process occurring in the SOD1-ALS cases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Doctoral Student 5 15%
Student > Master 4 12%
Student > Bachelor 3 9%
Student > Ph. D. Student 3 9%
Other 8 24%
Unknown 4 12%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 24%
Medicine and Dentistry 6 18%
Neuroscience 5 15%
Chemistry 3 9%
Unspecified 2 6%
Other 5 15%
Unknown 5 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2017.
All research outputs
#3,085,591
of 22,925,760 outputs
Outputs from Molecular Neurodegeneration
#431
of 852 outputs
Outputs of similar age
#64,833
of 420,807 outputs
Outputs of similar age from Molecular Neurodegeneration
#11
of 24 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 852 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,807 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.