↓ Skip to main content

Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration

Overview of attention for article published in Molecular Neurodegeneration, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
106 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration
Published in
Molecular Neurodegeneration, January 2017
DOI 10.1186/s13024-016-0146-8
Pubmed ID
Authors

Yu Ohki, Andrea Wenninger-Weinzierl, Alexander Hruscha, Kazuhide Asakawa, Koichi Kawakami, Christian Haass, Dieter Edbauer, Bettina Schmid

Abstract

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 (C9orf72) locus. The pathological hallmarks observed in C9orf72 repeat expansion carriers are the formation of RNA foci and deposition of dipeptide repeat (DPR) proteins derived from repeat associated non-ATG (RAN) translation. Currently, it is unclear whether formation of RNA foci, DPR translation products, or partial loss of C9orf72 predominantly drive neurotoxicity in vivo. By using a transgenic approach in zebrafish we address if the most frequently found DPR in human ALS/FTLD brain, the poly-Gly-Ala (poly-GA) protein, is toxic in vivo. We generated several transgenic UAS responder lines that express either 80 repeats of GGGGCC alone, or together with a translation initiation ATG codon forcing the translation of GA80-GFP protein upon crossing to a Gal4 driver. The GGGGCC repeat and GA80 were fused to green fluorescent protein (GFP) lacking a start codon to monitor protein translation by GFP fluorescence. Zebrafish transgenic for the GGGGCC repeat lacking an ATG codon showed very mild toxicity in the absence of poly-GA. However, strong toxicity was induced upon ATG initiated expression of poly-GA, which was rescued by injection of an antisense morpholino interfering with start codon dependent poly-GA translation. This morpholino only interferes with GA80-GFP translation without affecting repeat transcription, indicating that the toxicity is derived from GA80-GFP. These novel transgenic C9orf72 associated repeat zebrafish models demonstrate poly-GA toxicity in zebrafish. Reduction of poly-GA protein rescues toxicity validating this therapeutic approach to treat C9orf72 repeat expansion carriers. These novel animal models provide a valuable tool for drug discovery to reduce DPR associated toxicity in ALS/FTLD patients with C9orf72 repeat expansions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 106 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 <1%
Unknown 105 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 24%
Student > Bachelor 15 14%
Student > Master 14 13%
Researcher 9 8%
Student > Doctoral Student 7 7%
Other 14 13%
Unknown 22 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 22%
Neuroscience 23 22%
Agricultural and Biological Sciences 18 17%
Medicine and Dentistry 9 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 8 8%
Unknown 23 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2017.
All research outputs
#2,792,024
of 22,940,083 outputs
Outputs from Molecular Neurodegeneration
#372
of 852 outputs
Outputs of similar age
#59,092
of 421,728 outputs
Outputs of similar age from Molecular Neurodegeneration
#8
of 27 outputs
Altmetric has tracked 22,940,083 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 852 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,728 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.