↓ Skip to main content

Non-associative versus associative learning by foraging predatory mites

Overview of attention for article published in BMC Ecology and Evolution, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-associative versus associative learning by foraging predatory mites
Published in
BMC Ecology and Evolution, January 2017
DOI 10.1186/s12898-016-0112-x
Pubmed ID
Authors

Peter Schausberger, Stefan Peneder

Abstract

Learning processes can be broadly categorized into associative and non-associative. Associative learning occurs through the pairing of two previously unrelated stimuli, whereas non-associative learning occurs in response to a single stimulus. How these two principal processes compare in the same learning task and how they contribute to the overall behavioural changes brought about by experience is poorly understood. We tackled this issue by scrutinizing associative and non-associative learning of prey, Western flower thrips Frankliniella occidentalis, by the predatory mite, Neoseiulus californicus. We compared the behaviour of thrips-experienced and -naïve predators, which, early in life, were exposed to either thrips with feeding (associative learning), thrips without feeding (non-associative learning), thrips traces on the surface (non-associative learning), spider mites with feeding (thrips-naïve) or spider mite traces on the surface (thrips-naïve). Thrips experience in early life, no matter whether associative or not, resulted in higher predation rates on thrips by adult females. In the no-choice experiment, associative thrips experience increased the predation rate on the first day, but shortened the longevity of food-stressed predators, a cost of learning. In the choice experiment, thrips experience, no matter whether associative or not, increased egg production, an adaptive benefit of learning. Our study shows that both non-associative and associative learning forms operate in foraging predatory mites, N. californicus. The non-rewarded thrips prey experience produced a slightly weaker, but less costly, learning effect than the rewarded experience. We argue that in foraging predatory mites non-associative learning is an inevitable component of associative learning, rather than a separate process.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Unknown 51 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 17%
Student > Master 7 13%
Student > Bachelor 5 10%
Researcher 4 8%
Student > Doctoral Student 3 6%
Other 7 13%
Unknown 17 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 33%
Neuroscience 5 10%
Psychology 3 6%
Environmental Science 2 4%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 7 13%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 February 2017.
All research outputs
#4,619,112
of 25,374,647 outputs
Outputs from BMC Ecology and Evolution
#1,172
of 3,714 outputs
Outputs of similar age
#84,121
of 423,786 outputs
Outputs of similar age from BMC Ecology and Evolution
#31
of 71 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,786 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.