↓ Skip to main content

Transcriptomic response of wolf spider, Pardosa pseudoannulata, to transgenic rice expressing Bacillus thuringiensis Cry1Ab protein

Overview of attention for article published in BMC Biotechnology, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

twitter
15 X users

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptomic response of wolf spider, Pardosa pseudoannulata, to transgenic rice expressing Bacillus thuringiensis Cry1Ab protein
Published in
BMC Biotechnology, January 2017
DOI 10.1186/s12896-016-0325-2
Pubmed ID
Authors

Juan Wang, Yuande Peng, Kaifu Xiao, Baoyang Wei, Jilin Hu, Zhi Wang, Qisheng Song, Xuguo Zhou

Abstract

Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in South China, plays a crucial role in the rice agroecosystem. In this study, we investigated transcriptome responses of the 5th instar spiders fed on preys maintained on Bt- and non-Bt rice. Comparative transcriptome analysis resulted in 136 differentially expressed genes (DEGs) between spiderlings preying upon N. lugens fed on Bt- and non-Bt rice (Bt- and non-Bt spiderlings). Functional analysis indicated a potential impact of Bt toxin on the formation of new cuticles during molting. GO and KEGG enrichment analyses suggested that GO terms associated with chitin or cuticle, including "chitin binding", "chitin metabolic process", "chitin synthase activity", "cuticle chitin biosynthetic process", "cuticle hydrocarbon biosynthetic process", and "structural constituent of cuticle", and an array of amino acid metabolic pathways, including "alanine, asparatate and glutamate metabolism", "glycine, serine and theronine metabolism", "cysteine and methionine metabolism", "tyrosine metabolism", "phenylalanine metabolism and phenylalanine", and "tyrosine and tryptophan biosynthesis" were significantly influenced in response to Cry1Ab. The Cry1Ab may have a negative impact on the formation of new cuticles during molting, which is contributed to the delayed development of spiderlings. To validate these transcriptomic responses, further examination at the translational level will be warranted.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 17%
Student > Ph. D. Student 2 17%
Student > Master 1 8%
Researcher 1 8%
Professor > Associate Professor 1 8%
Other 1 8%
Unknown 4 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 25%
Medicine and Dentistry 1 8%
Engineering 1 8%
Unknown 7 58%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2017.
All research outputs
#3,920,169
of 24,457,696 outputs
Outputs from BMC Biotechnology
#194
of 962 outputs
Outputs of similar age
#74,443
of 426,935 outputs
Outputs of similar age from BMC Biotechnology
#2
of 14 outputs
Altmetric has tracked 24,457,696 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 962 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 426,935 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.