↓ Skip to main content

Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants

Overview of attention for article published in BMC Bioinformatics, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants
Published in
BMC Bioinformatics, January 2017
DOI 10.1186/s12859-016-1408-8
Pubmed ID
Authors

Tsukasa Fukunaga, Wataru Iwasaki

Abstract

With rapid advances in genome sequencing and editing technologies, systematic and quantitative analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for automatically recording behavioral data for the nematode, but computational methods for analyzing these data are still under development. In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for 322 C. elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns among these states have a relationship as expected, and such a relationship must be taken into account to identify strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of postural states. Surprisingly, we found that two simple factors-overall acceleration of postural movement and elimination of inactivity periods-explained the behavioral characteristics of strains with very atypical transition patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of these simple factors. Finally, we found that the npr-1 and npr-3 mutants have similar behavioral patterns that were not predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that have not yet been characterized. We propose that elimination of inactivity periods and overall acceleration of postural change speed can explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results constitute guidelines for effectively finding strains that show "truly" interesting behaviors and systematically uncovering novel gene functions by bioimage-informatic approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 29%
Student > Bachelor 6 18%
Student > Ph. D. Student 6 18%
Student > Master 3 9%
Professor 2 6%
Other 3 9%
Unknown 4 12%
Readers by discipline Count As %
Neuroscience 7 21%
Biochemistry, Genetics and Molecular Biology 4 12%
Engineering 4 12%
Computer Science 3 9%
Agricultural and Biological Sciences 3 9%
Other 7 21%
Unknown 6 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2017.
All research outputs
#5,585,425
of 25,859,234 outputs
Outputs from BMC Bioinformatics
#1,959
of 7,759 outputs
Outputs of similar age
#102,051
of 423,416 outputs
Outputs of similar age from BMC Bioinformatics
#34
of 146 outputs
Altmetric has tracked 25,859,234 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,759 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,416 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.