↓ Skip to main content

Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal

Overview of attention for article published in Parasites & Vectors, January 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal
Published in
Parasites & Vectors, January 2017
DOI 10.1186/s13071-017-1976-0
Pubmed ID
Authors

Makhtar Niang, Laty G. Thiam, Cheikh Loucoubar, Abdourahmane Sow, Bacary D. Sadio, Mawlouth Diallo, Amadou A. Sall, Aissatou Toure-Balde

Abstract

Genetic analyses of the malaria parasite population and its temporal and spatial dynamics could provide an assessment of the effectiveness of disease control strategies. The genetic diversity of Plasmodium falciparum has been poorly documented in Senegal, and limited data are available from the Kedougou Region. This study examines the spatial and temporal variation of the genetic diversity and complexity of P. falciparum infections in acute febrile patients in Kedougou, southeastern Senegal. A total of 263 sera from patients presenting with acute febrile illness and attending Kedougou health facilities between July 2009 and July 2013 were obtained from a collection established as part of arbovirus surveillance in Kedougou. Samples identified as P. falciparum by nested PCR were characterized for their genetic diversity and complexity using msp-1 and msp-2 polymorphic markers. Samples containing only P. falciparum accounted for 60.83% (160/263) of the examined samples. All three msp-1 allelic families (K1, MAD20 and RO33) and two msp-2 allelic families (FC27 and 3D7) were detected in all villages investigated over the 5-year collection period. The average genotype per allelic family was comparable between villages. Frequencies of msp-1 and msp-2 allelic types showed no correlation with age (Fisher's exact test, P = 0.59) or gender (Fisher's exact test, P = 0.973), and were similarly distributed throughout the 5-year sampling period (Fisher's exact test, P = 0.412) and across villages (Fisher's exact test, P = 0.866). Mean multiplicity of infection (MOI) for both msp-1 and msp-2 was highest in Kedougou village (2.25 and 2.21, respectively) and among younger patients aged ≤ 15 years (2.12 and 2.00, respectively). The mean MOI was highest in 2009 and decreased progressively onward. Characterization of the genetic diversity and complexity of P. falciparum infections in Kedougou revealed no spatio-temporal variation in the genetic diversity of P. falciparum isolates. However, mean MOI varied with time of sera collection and decreased over the course of the study (July 2009 to July 2013). This suggests a slow progressive decrease of malaria transmission intensity in Kedougou Region despite the limited impact of preventive and control measures implemented by the National Malaria Control Programme on malaria morbidity and mortality.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 20%
Student > Ph. D. Student 7 18%
Student > Master 5 13%
Student > Bachelor 4 10%
Student > Doctoral Student 3 8%
Other 6 15%
Unknown 7 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 23%
Medicine and Dentistry 4 10%
Nursing and Health Professions 3 8%
Agricultural and Biological Sciences 3 8%
Business, Management and Accounting 1 3%
Other 8 20%
Unknown 12 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2017.
All research outputs
#17,863,974
of 22,940,083 outputs
Outputs from Parasites & Vectors
#3,834
of 5,480 outputs
Outputs of similar age
#291,478
of 417,650 outputs
Outputs of similar age from Parasites & Vectors
#70
of 117 outputs
Altmetric has tracked 22,940,083 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,480 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 417,650 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.