↓ Skip to main content

Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq

Overview of attention for article published in BMC Plant Biology, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq
Published in
BMC Plant Biology, November 2016
DOI 10.1186/s12870-016-0926-x
Pubmed ID
Authors

Nickolay A. Shmakov, Gennadiy V. Vasiliev, Natalya V. Shatskaya, Alexey V. Doroshkov, Elena I. Gordeeva, Dmitry A. Afonnikov, Elena K. Khlestkina

Abstract

Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 24%
Student > Master 3 10%
Other 2 7%
Student > Doctoral Student 2 7%
Student > Bachelor 2 7%
Other 4 14%
Unknown 9 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 38%
Biochemistry, Genetics and Molecular Biology 5 17%
Chemical Engineering 1 3%
Unspecified 1 3%
Psychology 1 3%
Other 1 3%
Unknown 9 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2017.
All research outputs
#20,390,619
of 22,940,083 outputs
Outputs from BMC Plant Biology
#2,536
of 3,271 outputs
Outputs of similar age
#233,582
of 270,660 outputs
Outputs of similar age from BMC Plant Biology
#21
of 30 outputs
Altmetric has tracked 22,940,083 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,271 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,660 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.