↓ Skip to main content

Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma

Overview of attention for article published in Respiratory Research, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma
Published in
Respiratory Research, January 2017
DOI 10.1186/s12931-017-0507-z
Pubmed ID
Authors

Utako Fujii, Nobuaki Miyahara, Akihiko Taniguchi, Naohiro Oda, Daisuke Morichika, Etsuko Murakami, Hikari Nakayama, Koichi Waseda, Mikio Kataoka, Hiroki Kakuta, Mitsune Tanimoto, Arihiko Kanehiro

Abstract

Retinoid X receptors (RXRs) are members of the nuclear receptor (NR) superfamily that mediate signaling by 9-cis retinoic acid, a vitamin A (retinol) derivative. RXRs play key roles not only as homodimers but also as heterodimeric partners-e.g., retinoic acid receptors (RARs), vitamin D receptors (VDRs), liver X receptors (LXRs), and peroxisome proliferator-activated receptors (PPARs). The NR family was recently associated with allergic diseases, but the role of RXRs in allergen-induced airway responses is not well defined. The goal of this study is to elucidate the role of RXRs in asthma pathogenesis and the potency of RXR partial agonist in the treatment of allergic airway inflammation and airway hyperresponsiveness using a murine model of asthma. We investigated the effect of a novel RXR partial agonist (NEt-4IB) on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in a murine model of asthma. Balb/c mice were sensitized (days 0 and 14) and challenged (days 28-30) with ovalbumin (OVA), and airway inflammation and airway responses were monitored 48 h after the last OVA challenge. NEt-4IB was administered orally on days 25 to 32. Oral administration of NEt-4IB significantly suppressed AHR and inflammatory cell accumulation in the airways and attenuated the levels of TNF-α in the lung and IL-5, IL-13 and NO levels in bronchoalveolar lavage (BAL) fluid and the number of periodic acid Schiff (PAS)-positive goblet cells in lung tissue. Treatment with NEt-4IB also significantly suppressed NF-κB expression. These data suggest that RXRs may be of crucial importance in the mechanism of allergic asthma and that the novel RXR partial agonist NEt-4IB may be a promising candidate for the treatment of allergic airway inflammation and airway hyperresponsiveness in a model of allergic asthma.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 28%
Researcher 4 14%
Student > Master 3 10%
Student > Bachelor 2 7%
Professor 2 7%
Other 4 14%
Unknown 6 21%
Readers by discipline Count As %
Immunology and Microbiology 5 17%
Biochemistry, Genetics and Molecular Biology 4 14%
Medicine and Dentistry 4 14%
Chemistry 3 10%
Business, Management and Accounting 2 7%
Other 4 14%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2017.
All research outputs
#16,722,913
of 25,377,790 outputs
Outputs from Respiratory Research
#2,055
of 3,062 outputs
Outputs of similar age
#255,286
of 422,539 outputs
Outputs of similar age from Respiratory Research
#28
of 48 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,539 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.