↓ Skip to main content

Beyond the exome: utility of long-read whole genome sequencing in exome-negative autosomal recessive diseases

Overview of attention for article published in Genome Medicine, December 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
16 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Beyond the exome: utility of long-read whole genome sequencing in exome-negative autosomal recessive diseases
Published in
Genome Medicine, December 2023
DOI 10.1186/s13073-023-01270-8
Pubmed ID
Authors

Lama AlAbdi, Hanan E. Shamseldin, Ebtissal Khouj, Rana Helaby, Bayan Aljamal, Mashael Alqahtani, Aisha Almulhim, Halima Hamid, Mais O. Hashem, Firdous Abdulwahab, Omar Abouyousef, Amal Jaafar, Tarfa Alshidi, Mohammed Al-Owain, Amal Alhashem, Saeed Al Tala, Arif O. Khan, Elham Mardawi, Hisham Alkuraya, Eissa Faqeih, Manal Afqi, Salwa Alkhalifi, Zuhair Rahbeeni, Samya T. Hagos, Wijdan Al-Ahmadi, Seba Nadeef, Sateesh Maddirevula, Khalid S. A. Khabar, Alexander Putra, Angel Angelov, Changsook Park, Ana M. Reyes-Ramos, Husen Umer, Ikram Ullah, Patrick Driguez, Yoshinori Fukasawa, Ming Sin Cheung, Imed Eddine Gallouzi, Fowzan S. Alkuraya

Abstract

Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 2 20%
Other 2 20%
Professor 1 10%
Student > Postgraduate 1 10%
Student > Master 1 10%
Other 0 0%
Unknown 3 30%
Readers by discipline Count As %
Unspecified 2 20%
Biochemistry, Genetics and Molecular Biology 2 20%
Agricultural and Biological Sciences 1 10%
Engineering 1 10%
Unknown 4 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2024.
All research outputs
#2,981,519
of 25,571,620 outputs
Outputs from Genome Medicine
#663
of 1,596 outputs
Outputs of similar age
#43,101
of 352,823 outputs
Outputs of similar age from Genome Medicine
#11
of 44 outputs
Altmetric has tracked 25,571,620 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,596 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 26.7. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,823 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.