↓ Skip to main content

Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#43 of 1,388)
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

twitter
42 X users
facebook
2 Facebook pages

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
67 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance
Published in
Critical Reviews in Diagnostic Imaging, January 2017
DOI 10.1186/s12968-017-0322-1
Pubmed ID
Authors

Thu-Thao Le, Jennifer Ann Bryant, Alicia Er Ting, Pei Yi Ho, Boyang Su, Raymond Choon Chye Teo, Julian Siong-Jin Gan, Yiu-Cho Chung, Declan P. O’Regan, Stuart A. Cook, Calvin Woon-Loong Chin

Abstract

Exercise cardiovascular magnetic resonance (ExCMR) has great potential for clinical use but its development has been limited by a lack of compatible equipment and robust real-time imaging techniques. We developed an exCMR protocol using an in-scanner cycle ergometer and assessed its performance in differentiating athletes from non-athletes. Free-breathing real-time CMR (1.5T Aera, Siemens) was performed in 11 athletes (5 males; median age 29 [IQR: 28-39] years) and 16 age- and sex-matched healthy volunteers (7 males; median age 26 [interquartile range (IQR): 25-33] years). All participants underwent an in-scanner exercise protocol on a CMR compatible cycle ergometer (Lode BV, the Netherlands), with an initial workload of 25W followed by 25W-increment every minute. In 20 individuals, exercise capacity was also evaluated by cardiopulmonary exercise test (CPET). Scan-rescan reproducibility was assessed in 10 individuals, at least 7 days apart. The exCMR protocol demonstrated excellent scan-rescan (cardiac index (CI): 0.2 ± 0.5L/min/m(2)) and inter-observer (ventricular volumes: 1.2 ± 5.3mL) reproducibility. CI derived from exCMR and CPET had excellent correlation (r = 0.83, p < 0.001) and agreement (1.7 ± 1.8L/min/m(2)). Despite similar values at rest (P = 0.87), athletes had increased exercise CI compared to healthy individuals (at peak exercise: 12.2 [IQR: 10.2-13.5] L/min/m(2) versus 8.9 [IQR: 7.5-10.1] L/min/m(2), respectively; P < 0.001). Peak exercise CI, where image acquisition lasted 13-17 s, outperformed that at rest (c-statistics = 0.95 [95% confidence interval: 0.87-1.00] versus 0.48 [95% confidence interval: 0.23-0.72], respectively; P < 0.0001 for comparison) in differentiating athletes from healthy volunteers; and had similar performance as VO2max (c-statistics = 0.84 [95% confidence interval = 0.62-1.00]; P = 0.29 for comparison). We have developed a novel in-scanner exCMR protocol using real-time CMR that is highly reproducible. It may now be developed for clinical use for physiological studies of the heart and circulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 42 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
Unknown 65 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 15%
Student > Ph. D. Student 8 12%
Student > Bachelor 6 9%
Student > Master 5 7%
Student > Doctoral Student 4 6%
Other 13 19%
Unknown 21 31%
Readers by discipline Count As %
Medicine and Dentistry 19 28%
Engineering 6 9%
Nursing and Health Professions 5 7%
Agricultural and Biological Sciences 2 3%
Sports and Recreations 2 3%
Other 7 10%
Unknown 26 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2020.
All research outputs
#1,547,210
of 25,832,559 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#43
of 1,388 outputs
Outputs of similar age
#31,490
of 425,226 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#1
of 27 outputs
Altmetric has tracked 25,832,559 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,388 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 425,226 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.