↓ Skip to main content

The fecal presence of enterotoxin and F4 genes as an indicator of efficacy of treatment with colistin sulfate in pigs

Overview of attention for article published in BMC Microbiology, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The fecal presence of enterotoxin and F4 genes as an indicator of efficacy of treatment with colistin sulfate in pigs
Published in
BMC Microbiology, January 2017
DOI 10.1186/s12866-016-0915-0
Pubmed ID
Authors

Mohamed Rhouma, John Morris Fairbrother, William Thériault, Francis Beaudry, Nadia Bergeron, Sylvette Laurent-Lewandowski, Ann Letellier

Abstract

Enterotoxigenic Escherichia coli (ETEC) strains producing multiple enterotoxins are important causes of post-weaning diarrhea (PWD) in pigs. The aim of the present study was to investigate the fecal presence of ETEC enterotoxin as well as F4 and F18 genes as an indicator of colistin sulfate (CS) efficacy for treatment of PWD in pigs. Forty-eight piglets were weaned at the age of 21 days, and were divided into four groups: challenged treated, challenged untreated, unchallenged treated, and unchallenged untreated. Challenge was performed using 10(9) CFU of an ETEC: F4 strain, and treatment was conducted using oral CS at the dose of 50,000 IU/kg. The fecal presence of genes encoding for STa, STb, LT, F4 and F18 was detected using PCR. The PCR amplification of ETEC virulence genes showed that nearly 100% of pigs excreted genes encoding for STa and STb toxins in the feces before the challenge. These genes, in the absence of the gene encoding F4, were considered as a marker for F4-negative ETEC. One day after ETEC: F4 oral challenge pigs in the two challenged groups excreted the genes encoding LT and F4 in the feces. These genes were considered as a marker for F4-positive ETEC. However, the gene encoding F18 was not detected in any fecal samples of the 4 groups throughout the experiment. After only 3 days of successive oral treatment with CS, a significant reduction in both the F4-positive and negative ETEC populations was observed in the challenged treated group compared to the challenged untreated group (p < 0.0001). Our study is among the first to report that under controlled farming conditions, oral CS treatment had a significant effect on both fecal F4-positive and F4-negative ETEC in pigs. However, CS clinical efficiency was correlated with non-detection of F4-positive ETEC in the feces. Furthermore the fecal presence of F4-negative ETEC was not associated with clinical symptoms of post-weaning diarrhea in pigs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Researcher 4 18%
Student > Master 4 18%
Professor 2 9%
Student > Bachelor 2 9%
Other 0 0%
Unknown 5 23%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 8 36%
Biochemistry, Genetics and Molecular Biology 1 5%
Nursing and Health Professions 1 5%
Agricultural and Biological Sciences 1 5%
Immunology and Microbiology 1 5%
Other 3 14%
Unknown 7 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2017.
All research outputs
#18,529,032
of 22,950,943 outputs
Outputs from BMC Microbiology
#2,252
of 3,203 outputs
Outputs of similar age
#311,140
of 421,147 outputs
Outputs of similar age from BMC Microbiology
#30
of 39 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,203 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,147 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.