↓ Skip to main content

Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration

Overview of attention for article published in Stem Cell Research & Therapy, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
3 X users
patent
3 patents
facebook
1 Facebook page

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration
Published in
Stem Cell Research & Therapy, January 2017
DOI 10.1186/s13287-017-0477-6
Pubmed ID
Authors

Yoojun Nam, Yeri Alice Rim, Seung Min Jung, Ji Hyeon Ju

Abstract

The native articular cartilage lacks the ability to heal. Currently, ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells are used to regenerate the damaged cartilage. With unlimited self-renewal ability and multipotency, human induced pluripotent stem cells (hiPSCs) have been highlighted as a new replacement cell source for cartilage repair. Still, further research is needed on cartilage regeneration using cord blood mononuclear cell-derived hiPSCs (CBMC-hiPSCs). Human iPSCs were generated from CBMCs using the Sendai virus. The characterization of CBMC-hiPSCs was performed by various assays. Embryonic bodies (EBs) were obtained using CBMC-hiPSCs, and outgrowth cells were induced by plating the EBs onto a gelatin-coated plate. Expanded outgrowth cells were detached and dissociated for chondrogenic differentiation. Outgrowth cells were differentiated into chondrogenic lineage with pellet culture. Chondrogenic pellets were maintained for 30 days. The quality of chondrogenic pellets was evaluated using various staining and genetic analysis of cartilage-specific markers. Reprogramming was successfully done using CBMCs. CBMC-hiPSCs (n = 3) showed high pluripotency and normal karyotype. Chondrogenic pellets were generated from the outgrowth cells derived from CBMC-hiPSC EBs. The generated chondrogenic pellets showed high expression of chondrogenic genetic markers such as ACAN, COMP, COL2A1, and SOX9. The production of extracellular matrix (ECM) proteins was confirmed by safranin O, alcian blue and toluidine blue staining. Expression of collagen type II and aggrecan was detected in the accumulated ECM by immunohistological staining. Chondrogenic pellets showed low expression of fibrotic and hypertrophic cartilage marker, collagen type I and X. This study reveals the potential of CBMC-hiPSCs as a promising candidate for cartilage regeneration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 17%
Student > Bachelor 12 17%
Student > Master 7 10%
Student > Postgraduate 6 8%
Researcher 6 8%
Other 11 15%
Unknown 17 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 20%
Medicine and Dentistry 12 17%
Agricultural and Biological Sciences 9 13%
Engineering 5 7%
Sports and Recreations 2 3%
Other 6 8%
Unknown 23 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2023.
All research outputs
#3,158,274
of 25,051,161 outputs
Outputs from Stem Cell Research & Therapy
#251
of 2,722 outputs
Outputs of similar age
#61,943
of 430,398 outputs
Outputs of similar age from Stem Cell Research & Therapy
#6
of 45 outputs
Altmetric has tracked 25,051,161 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,722 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 430,398 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.