↓ Skip to main content

Sleep/wake movement velocities, trajectories and micro-arousals during maturation in rats

Overview of attention for article published in BMC Neuroscience, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sleep/wake movement velocities, trajectories and micro-arousals during maturation in rats
Published in
BMC Neuroscience, February 2017
DOI 10.1186/s12868-017-0343-6
Pubmed ID
Authors

Gideon Gradwohl, Nadja Olini, Reto Huber

Abstract

Sleep is regulated by two main processes. The circadian process provides a 24-h rhythm and the homeostatic process reflects sleep pressure, which increases in the course of wakefulness and decreases during sleep. Both of these processes undergo major changes during development. For example, sleep homeostasis, measured by means of electroencephalogram (EEG) slow-wave activity (SWA, EEG power between 0.5 and 4.5 Hz), peaks around puberty and decreases during adolescence. In humans and rats these changes have been related to cortical maturation. We aimed to explore whether additional parameters as state dynamic (dynamic of sleep/wake behavior) parameters of movement velocity, trajectories and micro-arousals provide markers of rat maturation. The state dynamics reflect the stability of sleep within a specific sleep stage. We applied a state space technique (SST), a quantitative and unbiased method, based on frequency band ratios of the EEG to analyze the development of different sleep/wake states and state dynamics between vigilance states. EEG of recording electrodes at the frontal and parietal lobe were analyzed using conventional scoring criteria and SST. We found that movement velocity, trajectories between sleep states and micro-arousals changed as an inverse U-shaped curve across maturation. At all ages, movement velocity over the frontal lobe is higher compared to the parietal lobe, while the number of trajectories and micro-arousals are reduced. Furthermore, we showed that SWA correlates negatively with movement velocity and the number of micro-arousals. The velocity in the parietal lobe correlates positively with the number of micro-arousals. As for SWA, trajectories seem primarily to depend on sleep homeostasis regulatory mechanisms while the movement velocity seems to be modulated by other sleep regulators like the circadian rhythms. New insights in sleep/wake state dynamics are established with the SST, because trajectories, micro-arousals and velocities are not evident by traditional scoring methods. These dynamic measures may represent new indicators for changes in sleep regulatory processes across maturation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Master 3 13%
Student > Bachelor 2 8%
Other 2 8%
Student > Doctoral Student 2 8%
Other 2 8%
Unknown 9 38%
Readers by discipline Count As %
Neuroscience 4 17%
Agricultural and Biological Sciences 2 8%
Psychology 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 2 8%
Unknown 12 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2017.
All research outputs
#20,402,251
of 22,952,268 outputs
Outputs from BMC Neuroscience
#1,058
of 1,249 outputs
Outputs of similar age
#355,801
of 420,202 outputs
Outputs of similar age from BMC Neuroscience
#16
of 35 outputs
Altmetric has tracked 22,952,268 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,249 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,202 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.