↓ Skip to main content

The meaning of acid–base abnormalities in the intensive care unit – effects of fluid administration

Overview of attention for article published in Critical Care, September 2004
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

blogs
2 blogs

Citations

dimensions_citation
120 Dimensions

Readers on

mendeley
295 Mendeley
citeulike
2 CiteULike
connotea
1 Connotea
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The meaning of acid–base abnormalities in the intensive care unit – effects of fluid administration
Published in
Critical Care, September 2004
DOI 10.1186/cc2946
Pubmed ID
Authors

Thomas J Morgan

Abstract

Stewart's quantitative physical chemical approach enables us to understand the acid-base properties of intravenous fluids. In Stewart's analysis, the three independent acid-base variables are partial CO2 tension, the total concentration of nonvolatile weak acid (ATOT), and the strong ion difference (SID). Raising and lowering ATOT while holding SID constant cause metabolic acidosis and alkalosis, respectively. Lowering and raising plasma SID while clamping ATOT cause metabolic acidosis and alkalosis, respectively. Fluid infusion causes acid-base effects by forcing extracellular SID and ATOT toward the SID and ATOT of the administered fluid. Thus, fluids with vastly differing pH can have the same acid-base effects. The stimulus is strongest when large volumes are administered, as in correction of hypovolaemia, acute normovolaemic haemodilution, and cardiopulmonary bypass. Zero SID crystalloids such as saline cause a 'dilutional' acidosis by lowering extracellular SID enough to overwhelm the metabolic alkalosis of ATOT dilution. A balanced crystalloid must reduce extracellular SID at a rate that precisely counteracts the ATOT dilutional alkalosis. Experimentally, the crystalloid SID required is 24 mEq/l. When organic anions such as L-lactate are added to fluids they can be regarded as weak ions that do not contribute to fluid SID, provided they are metabolized on infusion. With colloids the presence of ATOT is an additional consideration. Albumin and gelatin preparations contain ATOT, whereas starch preparations do not. Hextend is a hetastarch preparation balanced with L-lactate. It reduces or eliminates infusion related metabolic acidosis, may improve gastric mucosal blood flow, and increases survival in experimental endotoxaemia. Stored whole blood has a very high effective SID because of the added preservative. Large volume transfusion thus causes metabolic alkalosis after metabolism of contained citrate, a tendency that is reduced but not eliminated with packed red cells. Thus, Stewart's approach not only explains fluid induced acid-base phenomena but also provides a framework for the design of fluids for specific acid-base effects.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 295 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 4 1%
Italy 4 1%
Brazil 4 1%
Japan 3 1%
United States 2 <1%
Mexico 2 <1%
Australia 1 <1%
Hong Kong 1 <1%
United Kingdom 1 <1%
Other 6 2%
Unknown 267 91%

Demographic breakdown

Readers by professional status Count As %
Other 58 20%
Student > Postgraduate 52 18%
Researcher 42 14%
Student > Master 25 8%
Professor 18 6%
Other 74 25%
Unknown 26 9%
Readers by discipline Count As %
Medicine and Dentistry 229 78%
Agricultural and Biological Sciences 7 2%
Veterinary Science and Veterinary Medicine 6 2%
Nursing and Health Professions 5 2%
Pharmacology, Toxicology and Pharmaceutical Science 4 1%
Other 13 4%
Unknown 31 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2016.
All research outputs
#3,414,380
of 25,371,288 outputs
Outputs from Critical Care
#2,732
of 6,554 outputs
Outputs of similar age
#5,879
of 69,767 outputs
Outputs of similar age from Critical Care
#5
of 16 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,554 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 69,767 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.