↓ Skip to main content

A novel modified-indirect ELISA based on spherical body protein 4 for detecting antibody during acute and long-term infections with diverse Babesia bovis strains

Overview of attention for article published in Parasites & Vectors, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A novel modified-indirect ELISA based on spherical body protein 4 for detecting antibody during acute and long-term infections with diverse Babesia bovis strains
Published in
Parasites & Vectors, February 2017
DOI 10.1186/s13071-017-2016-9
Pubmed ID
Authors

Chungwon J. Chung, Carlos E. Suarez, Carey L. Bandaranayaka-Mudiyanselage, Chandima-Bandara Bandaranayaka-Mudiyanselage, Joanna Rzepka, TJ Heiniger, Grace Chung, Stephen S. Lee, Ethan Adams, Grace Yun, Susan J. Waldron

Abstract

Cattle persistently infected with Babesia bovis are reservoirs for intra- and inter-herd transmission. Since B. bovis is considered a persistent infection, developing a reliable, high-throughput assay that detects antibody during all stages of the infection could be pivotal for establishing better control protocols. A modified indirect enzyme-linked immunosorbent assay (MI-ELISA) was developed using the spherical body protein-4 (SBP4) of B. bovis to detect antibody against diverse strains through all infection stages in cattle. This SBP4 MI-ELISA was evaluated for sensitivity and specificity against field sera from regions with endemic and non-endemic B. bovis. Sera were also evaluated from cattle infected experimentally with various doses and strains during acute and persistent infection with parasitemia defined by nested PCR. The format variables for SBP4 MI-ELISA were optimized and the cutoff for positive and negative interpretation was determined based on receiver operating characteristic curve analysis using B. bovis positive and negative sera tested in the reference immunofluorescence assay (IFA). The diagnostic specificity of the SBP4 MI-ELISA using IFA-negative sera collected from Texas was 100%, significantly higher than the cELISA (90.4%) based on an epitope in the rhoptry-associated protein-1 (RAP-1 cELISA). The diagnostic sensitivity of the SBP4 MI-ELISA was 98.7% using the IFA-positive sera collected from several areas of Mexico, in contrast to that of the RAP-1 cELISA at 60% using these same sera. In cattle infected with low and high doses of three B. bovis strains, the SBP4 MI-ELISA remained antibody positive for 11 months or more after initial detection at 10 to 13 days post-inoculation. However, the RAP-1 cELISA did not reliably detect antibody after eight months post-inoculation despite the fact that parasitemia was occasionally detectable by PCR. Furthermore, initial antibody detection by RAP-1 cELISA in low-dose infected animals was delayed approximately nine and a half days compared to the SBP4 MI-ELISA. These results demonstrate excellent diagnostic sensitivity and specificity of the novel SBP4 MI-ELISA for cattle with acute and long-term carrier infections. It is posited that use of this assay in countries that have B. bovis-endemic herds may be pivotal in preventing the spread of this disease to non-endemic herds.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 12%
Student > Ph. D. Student 2 12%
Researcher 2 12%
Student > Bachelor 2 12%
Other 1 6%
Other 3 18%
Unknown 5 29%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 4 24%
Agricultural and Biological Sciences 4 24%
Unspecified 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Immunology and Microbiology 1 6%
Other 2 12%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2017.
All research outputs
#18,531,724
of 22,953,506 outputs
Outputs from Parasites & Vectors
#4,248
of 5,483 outputs
Outputs of similar age
#315,223
of 426,820 outputs
Outputs of similar age from Parasites & Vectors
#116
of 154 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,483 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 426,820 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.